The selection of optimal hibernation temperature (TH) was possible by bats changing both the distance at which they roosted from the mine entrance (D) (TH versus D; rs= 0.73, n = 615, P < 0.001), and the height of hibernation place (H) (TH vs. H; rs= 0.16, n = 412, P < 0.01). Bats were able to select areas of high relative humidity (RH) by roosting in low temperature (RH vs. TH; rs= -0.26, n = 366, P < 0.001) and/or by selecting hibernation places situated lower on the mine walls (RH vs. H; rs= -0.61, n = 280, P < 0.001). Sub-adult bats (identified by presence of the black chin spot) were found to hibernate at significantly lower temperatures (Z = -3.1, n1 = 164, n2 = 41, P < 0.01) and in places situated lower on the mine walls (Z = -2.2, n1 = 164, n2, = 41, P < 0.05) than adult individuals. In March sub-adults hibernated closer to the entrance than adult individuals (χ2 = 8.18, d.f. = 1, P < 0.01). The difference in average body condition index between sub-adult and adult bats recorded in March (one-way ANOVA, F = 6.56, error d.f. = 51, P < 0.05) made individuals in their first year of life more prone to starvation at the end of hibernation period. In this month the significantly smaller distance of hibernation place of sub-adult individuals from the mine entrance (Z = -2.7, n1 = 58, n2, = 19, P < 0.01), resulted in significantly lower hibernation temperature, making them more endangered by predation of mammalian and avian species than adult bats hibernating deeper in the mine. The linear (r = 0.87, d.f. = 30, P < 0.001) relationship between body mass at the beginning and end of hibernation (November and March) of uniquely marked individuals indicates these bats did not forage in winter and their energy use was exclusively dependent on fat reserves accumulated prior to hibernation. The significant relationship between body mass in November and total mass loss (r = 0.59, d.f. = 30, P < 0.001) could indicate the possibility of existence of another factor, or group of factors, that could increase the energy use in hibernating M. daubentonii. These may include mating and/or energy costly defence against predators.
How to translate text using browser tools
1 June 2004
Sex and Age Related Habitat Selection and Mass Dynamics of Daubenton's Bats Myotis daubentonii (Kuhl, 1817) Hibernating in Natural Conditions
Tomasz Kokurewicz
E. L. P. Anthony
1988. Age determination in bats. Pp. 47–58,
in
Ecological and behavioral methods for the study of bats (
T. H. Kunz
, ed.).
Smithsonian Institution Press, Washington D.C., 533 pp. Google Scholar
M. I. Avery
1985. Winter activity of pipistrelle bats. Journal of Animal Ecology, 54: 721–738. Google Scholar
E. Bagrowska-Urbańczyk
, and
Z. Urbańczyk
.
1983. Structure and dynamics of a winter colony of bats. Acta Theriologica, 28: 183–196. Google Scholar
J. P. Bekker
1988. Watervleermuis Myotis daubentoni als prooi van steenmarter Martes foina in ondergrondse mergelgroeven. Lutra, 31: 82–85. Google Scholar
J. J. Bezem
,
J. W. Sluiter
, and
P. F. van Heerdt
.
1960. Population statistics of five species of the genus Myotis and one of the genus Rhinolophus, hibernating in the caves of S. Limburg. Archives Néerlandaises de Zoologie, 13: 511–539. Google Scholar
P. Bilke
(1978): Winterquartier von Myotis myotis im Bodengeröll. Nyctalus (N.F.), 2: 74 [not seen, cited after NAGEL and NAGEL, 1991]. Google Scholar
W. Bogdanowicz
1990. Geographic variation and taxonomy of Daubenton's bat, Myotis daubentoni, in Europe. Journal of Mammalogy, 71: 205–218. Google Scholar
W. Bogdanowicz
1992. Sexual dimorphism in size of the skull in European Myotis daubentoni (Mammalia: Chiroptera). Pp. 17–25,
in
Prague studies in mammalogy (
I. Horáček and
V. Vohralík
, eds.).
Charles University Press, Praha, xxi + 1–245. Google Scholar
W. Bogdanowicz, and
Z. Urbańczyk
1983. Some ecological aspects of bats hibernating in city of Poznań. Acta Theriologica, 28: 371–385. Google Scholar
M. R. Brigham
1987. The significance of winter activity by the big brown bat (Eptesicus fuscus): the influence of energy reserves. Canadian Journal of Zoology, 65: 1240–1242. Google Scholar
R. C. Burbank
, and
J. Z. Young
.
1934. Temperature changes and winter sleep of bats. Journal of Physiology, 82: 459–467. Google Scholar
C. D. Burnett
1983. Geographic and secondary sexual variation in the morphology of Eptesicus fuscus. Annals of Carnegie Museum, 52: 139–162. Google Scholar
C. D. Burnett
, and
T. H. Kunz
.
1982. Growth rates and age estimation in Eptesicus fuscus and comparison with Myotis lucifugus. Journal of Mammalogy, 63: 33–41. Google Scholar
S. Daan
1973. Activity during natural hibernation in three species of vespertilionid bats. Netherlands Journal of Zoology, 23: 1–71. Google Scholar
W. H. Davis
, and
H. B. Hitchcock
.
1965. Biology and migration of the bat, Myotis lucifugus, in New England. Journal of Mammalogy, 46: 296–313. Google Scholar
A. C. Entwistle
,
P. A. Racey
, and
J. R. Speakman
.
1998. The reproductive cycle and determination of sexual maturity in male brown long-eared bats, Plecotus auritus (Chiroptera: Vespertilionidae). Journal of Zoology (London), 244: 1–63. Google Scholar
W. G. Ewing,
E. H. Studier, and
M. J. O'Farrell
(1970. Autumn fat deposition and gross body composition in three species of Myotis. Comparative Biochemistry and Physiology, 36: 119–129. Google Scholar
J. Fabiszewski
1985. Szata roślinna. Pp. 191–235,
in
Karkonosze Polskie (
A. Jahn
, ed.).
Polska Akademia Nauk, Wrocław, 566 pp. Google Scholar
M. B. Fenton
1970. Population studies of Myotis lucifugus (Chiroptera: Vespertilionidae) in Ontario. Life Sciences Contributions Royal Ontario Museum, 77: 1–34. Google Scholar
J. S. Findley
1970. Phenetic relationships in the genus Myotis. Bijdragen tot de Dierkunde, 40: 26–29. Google Scholar
J. Gaisler
1966. A tentative ecological classification of colonies of the European bats. Lynx, 6: 35–39. Google Scholar
J. Gaisler
1970. Remarks on the thermopreferendum of Palearctic bats in their natural habitats. Bijdragen tot de Dierkunde, 40: 33–36. Google Scholar
H. Geiger
,
M. Lechnert
, and
C. Kallasch
.
1996. Zur Alterseinstufung von Wasserfledermäusen (Myotis daubentoni) mit Hilfe des Unterlippen-Hecks (‘chin-spot’). Nyctalus (N.F.), 6: 23–28. Google Scholar
D. R. Griffin
1986. Listening in the dark. Cornell University Press, Ithaca, xv + 415 pp. Google Scholar
W. Harmata
1973. The thermopreferendum of some species of bats (Chiroptera) in natural conditions. Zeszyty Naukowe Uniwersytetu Jagiellońskiego, 332, Prace Zoologiczne, 19: 127–141. Google Scholar
W. Harmata
1985. The length of awakening time from hibernation of three species of bats. Acta Theriologica, 30: 321–323. Google Scholar
W. Harmata
1987. The frequency of winter sleep interruptions in two species of bats hibernating in limestone tunnels. Acta Theriologica, 32: 331–332. Google Scholar
C. Harrje
1994. Etho-ökologische Untersuchung der ganzjährigen Aktivitt von Wasserfledermäusen (Myotis daubentoni Kuhl, 1819) am Winterquartier. Mitteilungen Naturwissenschaftlichen Gesellschaft Schaffhausen, 39: 15–52. Google Scholar
C. F. Herreid
1963. Survival of a migratory bat at different temperatures. Journal of Mammalogy, 44: 431–133. Google Scholar
R. J. Hock
1951. The metabolic rates and body temperatures of bats. Biological Bulletin, 101: 289–299. Google Scholar
S. A. Johnson
,
V. Brack
, and
R. E. Rolley
.
1998. Overwinter weight loss of Indiana bats (Myotis sodalis) from hibernacula subject to human visitation. The American Midland Naturalist, 139: 255–261. Google Scholar
G. Jones
, and
T. Kokurewicz
.
1994. Sex and age variation in echolocation calls and flight morphology of Daubenton's bats Myotis daubentonii. Mammalia, 58: 41–50. Google Scholar
T. Kokurewicz
1990. Hibernation of two age classes of Myotis daubentoni (Kuhl, 1819) in the nature reserve “Nietoperek” (W Poland) and effect of microclimate on cluster formation. Bat Research News, 31: 43. Google Scholar
T. Kokurewicz
1991. Materiały do chiropterofauny Polskich Karkonoszy. Prace Karkonoskiego Towarzystwa Naukowego, 53: 104–116. Google Scholar
T. Kokurewicz
1995. Increased population of Daubenton's bat Myotis daubentoni (Kuhl, 1819) (Chiroptera: Vespertilionidae) in Poland. Myotis, 32–33: 155–161. Google Scholar
T. Kokurewicz
1999. Hibernation ecology of Daubenton's bat Myotis daubentonii (Kuhl, 1817). Ph.D. Thesis, Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, 141 pp. Google Scholar
T. Kokurewicz
, and
J. Bartmańska
.
1992. Early sexual maturity in males of Daubenton's bat (Myotis daubentoni (Kuhl, 1819) (Chiroptera: Vespertilionidae); field observations and histological studies on the genitalia. Myotis, 30: 95–108. Google Scholar
T. Kokurewicz
, and
N. Kováts
.
1989. Interpopulation differences in thermopreferendum of the lesser horseshoe bat, Rhinolophus hipposideros Bechstein, 1800 (Chiroptera: Rhinolophidae) in selected areas of Poland and Hungary. Myotis, 27: 131–137. Google Scholar
A. Krzanowski
1961. Weight dynamics of bats wintering in the cave at Puławy (Poland). Acta Theriologica, 4: 249–264. Google Scholar
B. Kuipers
, and
S. Daan
.
1970. “Internal migration” of hibernating bats: response to seasonal variation in cave microclimate. Bijdragen tot de Dierkunde, 40: 51–55. Google Scholar
T. H. Kunz
1982. Roosting ecology. Pp. 1–16,
in
Ecology of bats (
T. H. Kunz
, ed.).
Plenum Press, New York, 425 pp. Google Scholar
T. H. Kunz
,
J. A. Wrazen
, and
C. D. Burnett
.
1998. Changes in body mass and fat reserves in prehibernating little brown bat (Myotis lucifugus). Ecoscience, 5: 8–17. Google Scholar
M. Lemaire
,
J. J. Chaut
, and
L. Arthur
.
1994. 400 cadavres dans un site d'hibernation pollue. Pp. 129–133,
in
Actes des Cinquièmes Recontres Nationales ‘Chauves-Souris’. Muséum d'Histoire de Bourges et Société Française pour l'Ètude et la Protection des Mammifères, Bourges. Google Scholar
G. Lesiński
1986. Ecology of bats hibernating underground in Central Poland. Acta Theriologica, 31: 507–521. Google Scholar
G. Lesiński
1990. Changes in numbers of Myotis daubentoni (Kuhl, 1819) in autumn shelters and the effect of disturbance. Acta Theriologica, 35: 364–368. Google Scholar
K. Lundberg
, and
R. Gerell
.
1986. Territorial advertisement and mate attraction in the bat Pipistrellus pipistrellus. Ethology, 71: 115–124. Google Scholar
M. Masing
1987. Zimnee peredviženie rukokrylych meždu ubežiščami. Učonye Zapiski Tartuskogo Gosudarstvennogo Universiteta 769, Trudy po Zoologii, 15: 41–60 [not seen, cited after BOGDANOWICZ, 1994]. Google Scholar
B. K. McNab
1974. The behavior of temperate cave bats in a subtropical environment. Ecology, 55: 943–958. Google Scholar
A. Nagel
, and
R. Nagel
.
1991. How do bats choose optimal temperatures for hibernation? Comparative Biochemistry and Physiology, 99 A : 323–326. Google Scholar
E. S. Nyholm
1965. Zur Ökologie von Myotis mystacinus (Leisl.) und Myotis daubentoni (Leisl.) (Chiroptera). Annales Zoologici Fennici, 2: 77–123. Google Scholar
K. J. Park
,
G. Jones
,
R. D. Ransome
.
1999. Winter activity of a population of greater horseshoe bats (Rhinolophus ferrumequinum). Journal of Zoology (London), 248: 419–427. Google Scholar
K. J. Park
,
G. Jones
,
R. D. Ransome
.
2000. Torpor, arousal and activity of hibernating greater horseshoe bats (Rhinolophus ferrumequinum). Functional Ecology, 14: 580–588. Google Scholar
E. Petit
1998. Population structure and post-glacial history of the noctule bat Nyctalus noctula (Chiroptera, Mammalia). Ph.D. Thesis Friedrich-Alexander-Universitt, Erlangen-Nrnberg, 105 pp. Google Scholar
J. Piasecki
1997. Thermal periods of the year (1951–80). Map no. 48, in The atlas of Silesia. Wrocław University, Wrocław, 117 maps. Google Scholar
M. Průcha
, and
V. Hanzal
.
1989. Some aspects of hibernation of bats wintering in the Bohemian Karst (central Bohemia, Czechoslovakia). Acta Universitatis Carolinae, Biologica, 33: 315–333. Google Scholar
P. A. Racey
, and
J. R. Speakman
.
1987. The energy costs of pregnancy and lactation in heterothermal bats. Symposia of the Zoological Society of London, 57: 107–125. Google Scholar
P. A. Racey
,
S. M. Swift
,
J. Rydell
, and
L. Brodie
.
1998. Bats and insects over two Scottish rivers with contrasting nitrate status. Animal Conservation, 1: 195–202. Google Scholar
G. Radzicki
,
J. Hejduk
, and
J. Bańbura
.
1999. Tits (Parus major and Parus caeruleus) preying upon hibernating bats. Ornis Fennica, 76: 93–94. Google Scholar
R. D. Ransome
1968. The distribution of the greater horseshoe bat, Rhinolophus ferrumequinum, during hibernation, in relation to environmental factors. Journal of Zoology (London), 154: 77–112. Google Scholar
R. D. Ransome
1971. The effect of ambient temperature on the arousal frequency of the hibernating Greater horseshoe bat, Rhinolophus ferrumequinum, in relation to site selection and the hibernation state. Journal of Zoology (London), 164: 353–371. Google Scholar
R. D. Ransome
1985. Homeostatic control of body food reserves in hibernating greater horseshoe bats. Bat Research News, 26: 70. Google Scholar
R. D. Ransome
1990. The natural history of hibernating bats. Christopher Helm, London, xxi + 235 pp. Google Scholar
P. W. Richardson
1994. A new method of distinguishing Daubenton's bats (Myotis daubentonii) up to one year old from adults. Journal of Zoology (London), 223: 307–344. Google Scholar
H. Roer
1969. Zur Ernhrungsbiologie von Plecotus auritus (L.) (Chiroptera). Bonner Zoologische Beiträge, 20: 378–383. Google Scholar
J. Romanowski
, and
G. Lesiński
.
1988. Kuny polują na nietoperze. Wszechświat, 89 (9): 210. Google Scholar
O. Ryberg
1947. Studies on bats and bat parasites. Bokförlaget Svensk Natur, Stockholm, 330 pp. Google Scholar
J. R. Speakman
1991. Daubenton's bat Myotis daubentoni.
Pp. 108–111,
in
The handbook of British mammals (
G. B. Corbet and
S. Harris
, eds.).
Blackwell Scientific Publications, Oxford, 588 pp. Google Scholar
J. R. Speakman
1997. Factors influencing the daily energy expenditure of small mammals. Proceedings of Nutrition Society, 56: 1119–1136. Google Scholar
J. R. Speakman
, and
P. A. Racey
.
1986. The influence of body condition on sexual development of male brown long-eared bats (Plecotus auritus) in the wild. Journal of Zoology (London), 210: 515–525. Google Scholar
J. R. Speakman
, and
P. A. Racey
.
1989. Hibernal ecology of the pipistrelle bat: energy expenditure, water requirements and mass loss, implications for survival and the function of winter emergence flights. Journal of Animal Ecology, 58: 797–813. Google Scholar
J. R. Speakman
, and
P. A. Racey
.
1991. No cost of echolocation for bats in flight. Nature, 350 (6317): 421–123. Google Scholar
J. R. Speakman
, and
A. Rowland
.
1999. Preparing for inactivity: how insectivorous bats deposit a fat store for hibernation. Proceedings of Nutrition Society, 58: 123–131. Google Scholar
J. R. Speakman
,
Webb
,
P. I
., and
P. A. Racey
.
1991. Effects of disturbance on the energy expenditure of hibernating bats. Journal of Applied Ecology, 28: 1087–1104. Google Scholar
R. E. Stebbings
1966. A population study of bats of the genus Plecotus. Journal of Zoology (London), 150: 53–75. Google Scholar
D. W. Stephens
1981. Logic of risk-sensitive forging preferences. Animal Behaviour, 29: 628–629. Google Scholar
P. P. Strelkov
1962. The peculiarities of reproduction in bats (Vespertilionidae) near the northern border of their distribution. Pp. 306–311,
in
Proceedings of the International Symposium on Methods of Mammalogical Investigation, Brno, Czechoslovakia, 1960 (
J. Kratochvíl and
J. Pelikán, eds.). Československá Akademie Věd, Praha, 383 pp. [not seen, cited after BOGDANOWICZ, 1994]. Google Scholar
P. P. Strelkov
1969. Migratory and stationary bats (Chiroptera) of the European part of the Soviet Union. Acta Zoologica Cracoviensia, 14: 393–439. Google Scholar
D. W. Thomas
1995. Hibernating bats are sensitive to nontactile human disturbance. Journal of Mammalogy, 76: 940–946. Google Scholar
D. W. Thomas
and
F. Geiser
.
1997. Periodic arousals in hibernating mammals: is evaporative water loss involved? Functional Ecology, 11: 585–591. Google Scholar
D. W. Thomas
,
D. Cloutier
, and
D. Gagne
.
1990a. Arrythmic breathing, apnea and non-steady state oxygen uptake in hibernating little brown bats (Myotis lucifugus). Journal of Experimental Biology, 149: 395–106. Google Scholar
D. W. Thomas
,
M. Dorais
, and
J. M. Bergeron
.
1990b. Winter energy budgets and cost of arousals for hibernating little brown bats, Myotis lucifugus. Journal of Mammalogy, 71: 475–179. Google Scholar
P. Tryjanowski
1997. Food of the stone marten (Martes foina) in Nietoperek Bat Reserve. Zeitschrift für Säugetierkunde, 62: 318–320. Google Scholar
J. W. Twente
1955. Some aspects of habitat selection and other behaviour of cavern dwelling bats. Ecology, 36: 706–732. Google Scholar
J. W. Twente
, and
V. Brack
.
1985. The duration of the period of hibernation of three species of vespertilionid bats. I. Field studies. Canadian Journal of Zoology, 63: 2952–2954. Google Scholar
J. W. Twente
,
J. Twente
, and
V. Brack
.
1985. The duration of the period of hibernation of three species of vespertilionid bats. II. Laboratory studies. Canadian Journal of Zoology, 63: 2955–2961. Google Scholar
Z. Urbańczyk
1981. Fledermäuse (Chiroptera) in der Nahrung des Marders (Martes sp.). Säugetierkundliche Mitteilungen, 29: 77–79. Google Scholar
Z. Urbańczyk
1991. Hibernation of Myotis daubentoni and Barbastella barbastellus in Nietoperek bat reserve. Myotis, 29: 115–120. Google Scholar
P. I. Webb
,
J. R. Speakman
, and
P. A. Racey
.
1996. How hot is a hibernaculum? A review of the temperatures at which bats hibernate. Canadian Journal of Zoology, 74: 761–765. Google Scholar
J. O. Whitaker Jr
.,
R. K. Rose
, and
T. M. Padgett
.
1997. Food of the red bat Lasiurus borealis in winter in the great dismal swamp, North Carolina and Virginia. The American Midland Naturalist, 137:408–411. Google Scholar
C. B. Williams
1939. An analysis of four years captures of insects in a light trap. Part 1. Transactions of the Royal Entomological Society of London, 89: 79–132 [not seen, cited after RANSOME, 1968]. Google Scholar

Acta Chiropterologica
Vol. 6 • No. 1
June 2004
Vol. 6 • No. 1
June 2004
habitat selection
hibernation
mass dynamics
Myotis daubentonii
predation