Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The Okinawan least horseshoe bat, Rhinolophus pumilus, is a cave-dwelling species endemic to the central and southern Ryukyus, Japan. We analyzed variation in the constant frequency (CF) of the echolocation call and in forearm length (FAL) of this species on Okinawa-jima Island on the basis of data for 479 individuals from 11 caves scattered over the island. CF values in samples from six caves, all located in the southwestern half of Okinawa-jima, were significantly higher than those in samples from five caves in the northeastern half of the island. Also, FAL was significantly greater in the latter group than in the former group, although the ranges of variation in this character substantially overlapped between the two groups. These results suggest substantial differentiation between R. pumilus populations on Okinawa-jima. The implications of our findings for the conservation of this endangered bat species are briefly discussed.
Morphological processes in the vertical transmission of photosymbionts were investigated in the Prochloron-bearing ascidian Didemnum molle, Prochloron cells were found exclusively in the common cloacal cavity of the colony, attached mainly to the tunic lining of the cavity wall. Oocytes were found in the abdominal region of each zooid, but no Prochloron cells were associated with this stage. During embryogenesis, embryos moved into the tunic core of the colony and were always separated from Prochloron cells in the cloacal cavity by the tunic matrix, until they hatched out from the tunic core. In swimming larvae, Prochloron cells covered the surface of the posterior half of the larval trunk, whereas a thin larval tunic layer covered the anterior half, where no Prochloron cells were found. The tunic of the posterior half of the larval trunk had many folds that enfolded the Prochloron cells and may be adhesive in order to acquire Prochloron cells from the mother colony. The thin larval tunic layer is probably not adhesive and protects the anterior half of the trunk from interference by Prochloron cells with sensory receptors and adhesive organs.
Destruction of cyclin B is required for exit from mitosis and meiosis. A cyclin-degrading system, including anaphase-promoting-complex/cyclosome (APC/C), has been shown to be responsible for cyclin B destruction. Here we present the cloning, sequencing, and expression analysis of goldfish (Carassius auratus) APC11, which encodes the catalytic component of APC/C from goldfish ovary. The cloned cDNA is 348 bp long and encodes 88 amino acids. The deduced amino acid sequence is highly homologous to APC11 from other species. The expression of mRNA for APC11 was ubiquitous among tissues, as opposed to that of mRNA for E2-C, which occurred at a very high level in the ovary. Recombinant goldfish APC11 possesses ubiquitinating activity against cyclin B. We established an in vitro ubiquitinating system of proteins composed of purified recombinant E1, E2-C, and APC11 from goldfish. The reconstructed system for these ubiquitinating enzymes makes it feasible to elucidate the molecular mechanism of cyclin B degradation.
We previously identified a 66 kDa axonemal protein (Ci-Axp66.0) in sperm of the ascidian Ciona intestinalis, Here we found that Ci-Axp66.0 shows sequence similarity to the DC2 subunit of the Chlamydomonas outer arm docking complex. Analysis of secondary structure of Ci-Axp66.0 suggested that the N-terminal two-thirds of the molecule is rich in coiled coil structure, as in Chlamydomonas DC2. Immunogold localization revealed that it is located in the vicinity of outer arm dynein. Ci-Axp66.0 was partly extracted from the axonemes by a high salt solution and co-purified with outer arm dynein. This co-purification was not affected by the absence of Mg2 in isolation buffer, indicating that Ci-Axp66.0 is associated with outer arm dynein. These results suggest that Ci-Axp66.0 is a component of the outer arm dynein docking complex in the axonemes of Ciona sperm.
Segmentation of the vertebrate body via the sequential formation of somites is an important process in embryogenesis. This sequential process is governed by the activation and regulation of Notch-related molecular oscillators by fibroblast growth factor and retinoic acid (RA) signaling. In this study, we identified ledgerline, a novel gene of Xenopus laevis expressed specifically in the presomitic mesoderm. Knockdown of ledgerline using antisense morpholino oligonucleotides shifted the developing somite front and altered the expression of genes that regulate molecular oscillation, including Delta2, ESR5, Hairy2a, and Thylacine1. Knockdown of ledgerline also down-regulated RALDH-2 expression. Injection of RARα-CA, a constitutively active mutant of the RA receptor RARα, subsequently reduced the altered Thylacine1 expression. These results strongly suggest that ledgerline is essential for mesodermal RA activity and differentiation of the presomitic mesoderm during Xenopus somitogenesis.
The gastric-brooding asterinid sea star, Smilasterias multipara, broods from late August to early November in the shallow sublittoral zone of southeastern Australia. We observed males and females spawning in the laboratory. They shed gametes through gonopores on the sides of the arms. The eggs were orange, about 1.0 mm in diameter, and heavier than seawater. They were externally fertilized by sperm, and placed into the stomach of the female by the tube feet. Twenty-four hours after fertilization, the first cleavage occurred. Cleavage was equal, total, and radial. Development via a non-feeding lecithotrophic brachiolaria was direct, there being no planktrotrophic bipinnaria or brachiolaria larva. Embryos developed, through wrinkled blastula and gastrula stages, into brachiolariae with arms. All of the surfaces of the brachiolaria were covered by cilia. At metamorphosis, a starfish rudiment appeared on the posterior portion of the larval body, while the anterior portion of the larval body was absorbed. Two months after fertilization, metamorphosis was complete. After metamorphosis, juveniles in the stomach grew six pairs of tube feet in each arm. Juveniles, 3 mm in diameter, emerged from the mouth of the mother in early November. Developmental evidence suggests that this asteroid has evolved mechanisms for the protection of larvae and juveniles from gastric digestion.
This study was undertaken to examine physiological responses to acidification of environmental water in the “cobalt” variant of rainbow trout (Oncorhynchus mykiss), which exhibits malformation of the pituitary, by following changes in plasma levels of cortisol and electrolytes, blood pH, gill Na, K-ATPase activity, and immune functions after exposure to acid water (pH 4.5). Resting levels of plasma cortisol and lysozyme were significantly lower in the cobalt variant than in the normal trout, whereas plasma ceruloplasmin was significantly higher in the cobalt variant, suggesting that some endocrine factors, lacking or deficient in the cobalt variant, are important for the regulation of its immune functions. Blood pH was slightly but significantly lower in the cobalt variant at rest. After exposure to acid water for 24 h, both the normal trout and cobalt variant showed a significant elevation in plasma cortisol, although the increased level in the cobalt variant was still lower than that in the normal trout transferred to neutral water. No differences were seen in blood pH, plasma electrolytes, and gill Na, K-ATPase activity between the normal trout and the cobalt variant, indicating that the cobalt variant regulates ion balance when exposed to acid water, despite malformation of the pituitary. Although the normal trout showed a reduction in plasma lysozyme level after acid exposure, there was no significant change in the cobalt trout. Adverse effects of pituitary malformation on ion balance and immune functions may be compensated by extrapituitary factors in the cobalt variant when it is exposed to acid water.
In the anterior silk glands (ASGs) of the silkworm, Bombyx mori, intracellular cAMP increases transiently to a very high level shortly after the hemolymph ecdysteroid peak in the prepupal period. In cultured ASGs obtained on the day of gut-purge, cAMP levels were increased by 20-hydroxy-ecdysone (20E), and this increase was enhanced by an inhibitor of phosphodiesterase, but was not affected by α-amanitin, indicating the 20E action may not be mediated via gene expression. The increase in cAMP occurred within 30 seconds of exposure to a physiological concentration of 20E (1 μM), and also by ponasterone A. Our findings indicate a nongenomic action of ecdysteroids in insects, which may be an additional mechanism by which this steroid hormone induces acute responses in tissues and cells.
An attempt was made to induce estrus and ovulation in eight anestrus yaks by use of the Ovsynch protocol. Six out of eight yaks were successfully induced into estrus, and ovulation occurred in all the responding yaks 1–2 days after the second GnRH administration. Out of the six animals that responded to the treatment, two mated naturally with yak bulls, and calves were obtained from them. The other four animals were further administered a superovulatory regimen of Folltropin (FSH-P). Following Folltropin and Ilerin (a PGF2α analog) treatment, the animals were subjected to natural insemination. Only one animal in which natural mating occurred was flushed non-surgically for embryo recovery 7 days post-insemination. Thereafter, all the donor animals were administered with Ilerin. After 48–72 h, they came into heat and mated naturally with yak bulls, and calves were obtained from them after expiration of the normal gestation period. Following superovulation, the average numbers of palpable corpora lutea in the right and left ovaries were 2.25±0.6 and 1.75±0.3, respectively. Three embryos were recovered by non-surgical flushing from a single animal. One embryo was transferred to a recipient yak, who produced one female calf after 258 days. This is the first report of production of a yak calf through embryo transfer-technology.
We describe a new species of torrent-dwelling ranid frog of the genus Amolops from western to peninsular Thailand. Amolops panhai, new species, differs from its congeners by the combination of: small body, males 31–34 mm, females 48–58 mm in snout-vent length; head narrower than long; tympanum distinct; vomerine teeth in short, oblique patches; first finger subequal to second; disc of first finger smaller than that of second, with circummarginal groove; no wide fringe of skin on third finger; toes fully webbed; outer metatarsal tubercle present; supratympanic fold present; dorsolateral fold indistinct; axillary gland present; horny spines on back, side of head and body, and chest absent; large tubercles on side of anus absent; glandular fold on ventral surface of tarsus absent; nuptial pad and paired gular pouches present in male; white band along the upper jaw extending to shoulder absent; larval dental formula 7(4–7)/3(1). This new species is the second anuran discovered which has a disjunct distribution around the Isthmus of Kra.
A new whale-bone-eating polychaete species of the genus Osedax was found on sperm whale carcasses submerged off Cape Nomamisaki, Kyushu, Japan, at a depth of approximately 200 m. The new species, Osedax japonicus, is the fourth known species of the genus Osedax and the first species from the western Pacific. Female O. japonicus specimens (1) form dense clusters on whale carcasses; (2) have a body composed of crown, trunk, and root structure; (3) lack a digestive tract; and (4) have bacterium-like particles in the tissue of the root structure. Osedax japonicus shares all these characteristics with O. rubiplumus and O. frankpressi, and items (1) to (3) with O. mucofloris, Osedax japonicus is easily distinguished from the other three known species by oviduct morphology, body length, and palp coloration in females. No males of O. japonicus have yet been found.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere