Redox potential impacts wetland ecosystem functions and processes. This study assessed the temporal and spatial patterns and variability of soil redox potential in relation to: 1) hydrology, 2) soil phosphorus (P) enrichment, and 3) dominant vegetation community in an Everglades wetland. Probes installed for 2-week periods required 8 to 10 days for measurements to stabilize, considerably longer than what has been reported in the literature. Probes installed for 1 year yielded more stable measurements and were more useful for ecological analysis. Redox temporal patterns were related to water table fluctuation with redox increasing exponentially as the water table decreased from 5 cm above marsh surface. Large-scale spatial redox patterns were found in relation to P enrichment with higher average redox occurring in moderately-enriched regions (−134 mV) than in highly-enriched or unenriched regions (−185 mV for both). Vegetation community had no effect on redox status. Water level change was the primary driver of small-scale spatial variability (soil profile) with redox measurements varying more near the marsh surface during low water conditions. The degree of redox response to water table fluctuation decreased with increasing soil depth. These findings are important in understanding how altering hydrology can affect soil processes and ecosystem function.
How to translate text using browser tools
1 December 2009
Environmental Factors Affecting Temporal and Spatial Patterns of Soil Redox Potential in Florida Everglades Wetlands
Cassondra R. Thomas,
Shi Li Miao,
Erik Sindhøj
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Wetlands
Vol. 29 • No. 4
December 2009
Vol. 29 • No. 4
December 2009
cattail
microbial processes
phosphorus
sawgrass
scale
water depth