The Snowy Plover (Charadrius nivosus) is unique in being a determinate layer of an odd modal clutch size and in having a variable mating system in which female brood desertion occurs regularly. These traits make determining Snowy Plover offspring sex ratios important not only for long-term population stability, as the species is of conservation concern, but also for application to sex allocation theory. In this study, we determined Snowy Plover offspring sex ratios, examined differential costs of producing male and female offspring, and evaluated sex ratio variation in relation to maternal condition, habitat condition, and time during the nesting season on saline lakes of the Southern High Plains of Texas. Examination of 245 chicks from 118 clutches during 1999–2000 and 2008–2009 showed that male offspring were more costly to produce than female offspring; however, offspring sex ratio did not differ from parity, but was slightly male-biased in most years. The probability of producing a male offspring was greater both earlier and later in the breeding season than in the middle. As the availability of saline lake surface water and the subsequent availability of food vary unpredictably throughout the breeding season, depending on precipitation events, we suggest that sex ratio adjustment in unpredictable environments may not be straightforward and may follow nonlinear models and/or vary annually The effects such changes in sex ratios may have on population growth and stability remain unknown.