The growth response of earlywood and latewood to precipitation in chir pine (Pinus roxburghii) was studied by examining a series of core samples from the Garhwal Himalaya, India. Earlywood and latewood were observed to contribute about equal proportions towards the total ring width. Comparison of tree-ring data with the CRU TS3.22 (land) precipitation dataset indicates that earlywood is positively correlated with spring and early summer precipitation, whereas latewood is negatively correlated with pre-monsoon and early monsoon precipitation. This seasonally-reversed climate signal is confirmed when regional weather station precipitation data were used. A similar seasonally reversed climate response was found in earlywood and latewood of two datasets obtained from core samples from two other sites located in Nepal and Bhutan. Because chir pine is a light-demanding species, light limitation during the monsoon season could be an important factor behind the negative correlation between latewood and precipitation. NOAA NCEP-NCAR low cloud data were used to test this hypothesis, and the preliminary results support the hypothesis; however, further analysis will be needed to fully validate this hypothesis.