Coloradia pandora (Blake) is a phytophagous insect that defoliates Pinus ponderosa (Dougl. ex Laws.) in south-central Oregon. Little is known about the extent of damage this insect inflicts upon its host trees during an outbreak. In this paper, we present stem analyses on four dominant Pinus ponderosa trees that enable us to determine the amount of volume lost during each Coloradia pandora outbreak on this site for the past 450 years. We found that on average an outbreak inhibits radial growth so that an individual tree produces 0.057 m3 less wood volume than the potential growth for the duration of an individual outbreak. A total of 0.549 m3 of growth per tree was inhibited by 10 outbreaks during the lifetime of the trees, which, in this stand, equates to 9.912 m3/ha (1,700 board feet/acre) of wood suppressed over the last 450 years throughout the stand. Our results do not support previous findings of a lag in suppression onset between the canopy of the tree versus the base. Crossdating of stem analysis samples is paramount to definitively examine the potential for a lagged response throughout the tree, which has bearing on the mechanisms of growth initiation and as well as the tree's stored reserves.