INTRODUCTION
Ticks are transitory, hematophagous parasites that feed on mammals, birds, amphibians, and reptiles with environmental phases (oviposition and molt) and intermittent parasitic phases on the host during reproduction and feeding (Polanco-Echeverry and Ríos-Osorio, 2016; Luz et al., 2018). During the parasitic phases, they are of great importance because they cause ulcerative damage in the epithelium due to mechanical action, mild to severe anemia due to blood-sucking, toxic effects due to enzymes and neurotoxins present in saliva and, transmission of enzootic and zoonotic pathogens (Cortés-Vecino, 2011; Manzano et al., 2012; Oteo Revuelta, 2016; Cabezas-Cruz et al., 2018). The risk of exposure to ticks increases the vulnerability of animals to disease, generating pathologies that can reduce the parasitized population if individuals have not developed immune responses against them (Wikel, 1984).
Ticks are only occasionally found in crocodiles because they are not their habitual hosts (Huchzermeyer, 2003). However, tick infestations have been reported in 11 crocodilian species. Kwak et al., (2019) suggests there is a certain level of ecological overlap (water edge) between crocodilians and ticks where interactions between them would be facilitated. Crocodilians have a highly effective immune system (Siroski et al., 2009, 2013; Zimmerman et al., 2010), which makes it difficult to observe symptoms that are directly related to parasitism and highlights the need to broaden knowledge of the interactions between crocodiles and ticks and monitor the health of individuals in nature.
Currently, in Crocodylus Laurenti, 1768, Paleosuchus Gray, 1862 and Caiman Spix, 1825 genera, 21 records of ticks of the genus Amblyomma Koch, 1844 have been made, with identification of seven species: A. dissimile Koch, 1844 (Rainwater et al., 2001; Pietzsch et al., 2006, Lima and Gianizella, 2015; Charruau et al., 2016; Witter et al., 2016), A. rotundatum Koch, 1844 (Peralta et al., 1995; Morais et al., 2010; Rodríguez-Vivas et al., 2016; Witter et al., 2016; Acosta et al., 2019), A. grossum (Pallas, 1772) (Huchzermeyer, 2003), A. humerale Koch, 1844 (Labruna et al., 2005; Witter et al., 2016), A. mixtum Koch, 1844 (Rodríguez-Vivas et al., 2016); A. exornatum Koch, 1844 (Schwetz, 1927; Burridge, 2001; Huchzermeyer, 2003; Tellez, 2014) and A. cordiferum Neumann, 1899 (Kwak et al., 2019). In Colombia, only A. dissimile (one male and one female) has been recorded in Caiman crocodilus Linnaeus, 1758 at Caribbean region (Santodomingo et al., 2018).
The main objectives of this work were to identify the hard ticks (Acari: Ixodidae) found in the spectacled caiman, Caiman crocodilus fuscus (Cope, 1868), captured at the Hidroprado hydroelectric dam in the Department of Tolima, estimate parasite prevalence, and identify the risk of blood loss through blood sucking by ticks, considering the approximate blood consumption of ticks in the parasitized individuals.
MATERIALS AND METHODS
Study area
This study was undertaken at the hydroelectric dam of the Prado River (Hidroprado), in southeastern Department of Tolima, Colombia (03°45′N;74°50′W). Its area is 4,300 ha and has a warm climate (25–30°C) and rainfall of 700–2000 mm (Pizano and García, 2014). Hidroprado includes secondary forest patches, natural shrub vegetation, natural pastures used for extensive livestock farming, rural housing, private cabanas, and hotel infrastructure (Cortolima, Corpoica, Universidad del Tolima, 2006).
Collection and identification of ectoparasites
Given the size of the caimans (< 60 cm total length), the individuals were captured and released by hand or with the aid of a Pilstrom clamp or steel loop (Domínguez-Laso et al., 2011). Captured caimans were carefully examined for ectoparasites and the lesions they caused. The areas of the body where the ticks were distributed were recorded and photographed and ticks were extracted manually using a blunt-tipped forceps to ensure the extraction of complete gnathosomes (oral portions). Ticks were stored in jars with 100 mL of Hood's solution (95 mL 75% ethanol, 5 mL glycerin) for subsequent taxonomic and morphological identification at the parasitology laboratory of the Facultad de Medicina Veterinaria y Zootecnia of the Universidad Cooperativa de Colombia, Ibague-Espinal. The ticks were identified with the aid of a Leica EZ4® stereoscope and a Leica DM300® microscope and taxonomic keys to the ticks of the family Ixodidae (Barros-Battesti et al., 2006; Martins et al., 2014; Andreotti et al., 2016).
Parasite prevalence and blood loss rate
To estimate parasite prevalence, we calculated the proportion of captured Caiman crocodilus fuscus that were positive for ticks. To estimate the blood loss rate due to ticks, we considered the following parameters: (1) Blood volume of parasitized individuals based on the percentage of blood relative to live weight: Fleming and Fontenot (2014) determined this to be 3.5–5.5% in crocodilians, and we assumed the highest value (5.5%, expressed in mL) in order to avoid underestimating blood volume (Total blood volume = live weight of the animal × 0.055); (2) Daily consumption of blood by ticks: For Amblyomma americanum (Linnaeus, 1758), Koch and Sauer (1984) determined that nymphs and males consume 0.00135 mL/d and adult females consume 0.80 mL/d. We used these values because information this species is part of the same tick genus. (Daily consumption of blood = number of ticks × blood intake of tick nymphs, males, or females) and (3) The maximum volume of blood that can be extracted without significant health impacts: Blood extraction greater than 10% of total blood volume can result in hypovolemic shock in acute cases and anemia in chronic cases (Fleming and Fontenot, 2014). Therefore, we propose that there is no health risk when blood consumption of all ticks is less than 10% of the total blood volume and risk when blood loss exceeds 10% (maximum volume of blood loss = live weight of the animal × 0.1). We employed 10% as our criterion for health risk from blood loss because the spectacled caiman captured were small (25–60 cm), and at this stage they are more vulnerable to loss blood.
RESULTS
A total of 349 spectacled caimans were captured throughout the Hidroprado hydroelectric dam, among which ticks were observed in 10 individuals ranging in size from 25–60 cm in total length. As such, the estimated prevalence of tick parasites in C. c. fuscus was 2.87%. A total of 40 ticks were collected, of which 37 were adults and 3 were nymphs. Two species were identified: Amblyomma dissimile (29 females and 7 males; Fig. 1) and Rhipicephalus sanguineus (Latreille, 1806) (1 female; Fig. 2). The 3 nymphs were identified as Amblyomma sp. due to the lack of specific taxonomic keys and incompletely developed morphological characteristics, which hindered microscopic identification (Lah et al., 2016). The ticks were distributed as follows: 20 ticks on the ventral part of the hind limbs (Fig. 3E); 5 in the axilla (Fig. 3G); 4 on the ventral part of the lower jaw (Fig. 3B); 4 at the base of the tail (Fig. 3C, 3I); 2 in the ear (Fig. 3D); 2 on the neck (Fig. 3F); 1 on the lateral portion of the lower jaw (Fig. 3D); 1 on the lower left eyelid (Fig. 3H); and 1 on the dorsal part of the left hind limb (Fig. 3A).
Regarding risk to individuals due to blood loss by ticks, the results indicate that three individuals presented no risk (Table 1). Those individuals were each parasitized by a single tick, with resulting blood consumption less than 10% of total blood volume. In contrast, seven individuals were at risk, since blood consumption was 13–40% of the total blood volume. In the medical review, we observed that eight individuals showed no clinical signs of disease or lesions. However, two individuals exhibited lesions due to the mixed action of the ticks (mechanical and blood sucking). One individual with a tick adhered to the lower left eyelid was observed with inflammation of the eyelid margin, although no infection or involvement of the eye or the nictitating membrane was observed (Fig. 4A). The second individual exhibited an irregular skin lesion 0.8 mm wide in the middle area of the neck (left side) with loss of dermis and epidermis resulting from the bite of an engorged adult female (Fig. 4B).
Table 1.
Risk from blood loss in Caiman crocodilus fuscus. LT = Total Length; VS = total blood volume; G = total number of ticks; H = females; M-N = males and nymphs; CSTG = blood intake of total ticks.
DISCUSSION
Ticks were collected from Caiman crocodilus fuscus in areas with patches of secondary forests, under anthropic influence, and high density of domestic animals with free access to water at the Hidroprado hydroelectric dam. Contact between domestic and wild or synanthropic species increases the opportunity for ticks to infect a great diversity of potential hosts, creating new opportunities for dispersion of infectious agents (Estrada-Peña and De la Fuente, 2014; Cable et al., 2017; Young et al., 2017). The low prevalence of ticks in spectacled caimans at this locality suggests that infection is opportunistic. Rhipicephalus sanguineus is a parasite with preference for domestic mammals; however, we observed an engorged female parasitizing an individual of C. c. fuscus, indicating that R. sanguineous is a potential ectoparasite of wildlife.
Figure 1.
Amblyomma dissimile. (A) Presence of festoons. (B) Dentition (3/3). (C) Subtriangular capitulum. (D) Posterior anal groove. (E) Ornamented dorsal scutum. (F) Coxa I, II, III, and IV with 2 spurs present.
Rhipicephalus sanguineus is a cosmopolitan species and one of the main vectors of rickettsiosis (Rickettsia conorii Brumpt, 1932; and R. rickettsia Brumpt, 1922), anaplasmosis (Anaplasma platys Harvey et al., 1978 and A. phagocytophilum [Foggie, 1949]), Ehrlichia canis (Donatien and Lestoquard, 1935), Hepatozoon canis (James, 1905), and Babesia canis (Piana and Galli-Valerio, 1895) (Jongejan and Uilenberg, 2004). Babesia is an especially important hemoparasite because it causes morbidity and mortality in domestic animals, also affecting wild animals and, occasionally, humans, and is considered a pathogen of emerging zoonoses (Colwell et al., 2011). Mora (2009) recorded the presence of Babesia sp. in Crocodylus acutus (Cuvier, 1807) and C. moreletii (Duméril and Bibron, 1851) in captivity and nature but did not record any species of tick as a vector of this hemoparasite. However, Polanco-Echeverry and Ríos-Osorio (2016) indicated that the rate of infection by tick-transmitted Babesia is directly related to the abundance of the vector. Rhipicephalus sanguineus has been studied from the perspectives of biology (Dantas-Torres, 2010; Sanches et al., 2016; Labruna et al., 2017; Das et al., 2017), ecology (Dantas-Torres and Otranto, 2011; Gray et al., 2013; Szabó et al., 2013; Zemtsova et al., 2016), and epidemiology (Paz et al., 2010; Zemtsova et al., 2010; Socolovschi et al., 2012; Latrofa et al., 2014) due to its medical importance, but studies related to vector-parasite-host coexistence in the epidemiological chain in reptiles are lacking.
Figure 2.
Rhipicephalus sanguineus. (A) marginal groove. (B) Hypostome. (C) Scapular groove. (D) Anus. (E) Genital aperture. (F) Coxa I (with large spurs), coxa II, coxa III, and coxa IV with spurs short.
Figure 3.
Corporal distribution of the ticks on spectacled caiman. (A) Dorsal part of left leg. (B) Lower jaw. (C) Ventral part of left leg. (D) Jaw and ear. (E) Ventral part of right leg. (F) Neck. (G) Right axilla. (H) Lower left eyelid. (I) Base of tail.
Figure 4.
Cutaneous lesions due to the mixed action of the ticks. (A) Inflammation of the palpebral margin. (B) Irregular skin lesion.
Reptiles and amphibians are the natural hosts of Amblyomma dissimile (Voltzit, 2007), but this species has also been reported to parasitize mammals, birds, and humans (Guglielmone and Nava, 2006; Guzmán-Cornejo et al., 2011; Scott and Durden, 2015). Amblyomma dissimile is a potential vector of Ehrlichia ruminantium (Cowdry, 1925), the causal agent of hydropericardium in cattle and other ungulates (Peter et al., 2002). Kiel et al. (2006) reported the infection of Bitis gabonica Duméril et al., 1854 with an attenuated species of E. ruminantium that has adapted to infect reptiles. Further, A. dissimile is a potential vector of Rickettsia sp. strain colombianensi (Miranda et al., 2012), R. bellii Philip et al., 1983, R. monacensis Simser et al., 2002, and R. tamurae Fournier et al., 2006, emergent zoonotic pathogens with clinical and health importance. Amblyomma dissimile has been reported in Crocodylus acutus, Cr. moreletii, Caiman crocodilus (Linnaeus, 1758) and Ca. c. chiapasius (Bocourt, 1876) (Rainwater et al., 2001; Pietzsch et al., 2006; Lima and Gianizella, 2015; Charruau et al., 2016; Witter et al., 2016; Santodomingo et al., 2018). Although the role of crocodilians in the cycles of enzootic diseases is not clear (Charruau et al., 2016), A. dissimile could play a role as a reservoir in the maintenance of rickettsiae in reptile populations (Jongejan, 1992).
Clinically, the skin lesions found in spectacled caimans in the present study do not represent a health risk; however, in adverse environmental conditions and stress, lesions or complex skin infections can cause weakness and enable secondary infections (Huchzermeyer, 2003; Merchant and Britton, 2006). An important aspect to keep in mind is that in wild crocodiles it is difficult to observe symptoms that are related to ectoparasites or parasitemia.
Chaeychomsri et al. (2016) determined that crocodiles are capable of producing and replacing erythrocytes and hemoglobin at normal levels in one week, which allows them to lose approximately 25% of the total blood volume without a negative effect on health. However, that value was obtained under experimental conditions in individuals of Crocodylus siamensis Schneider, 1801 with an average weight of 27 kg and 191 cm total length. We employed 10% as our criterion for health risk from blood loss because the spectacled caiman captured were small (25–60 cm), and in this stage they are more vulnerable to blood loss.
Our results showed that blood consumption by ticks at the Hidroprado hydroelectric dam could put spectacled caimans at risk of regenerative anemia, which depends directly on the size of the specimens and the extent of the parasitic infection, with the smallest individuals being most vulnerable due to their lower total blood volume. However, our criterion of health risk must be interpreted with caution because it is incomplete, given that blood sucking by Amblyomma dissimile persists for 24–32 d (Schumaker and Barros, 1994), and we do not take into account the capacity of blood generation in spectacled caimans.
ACKNOWLEDGMENTS
We acknowledge the Universidad del Tolima for financial support for field work and the Facultad de Medicina Veterinaria y Zootecnia of the Universidad Cooperativa de Colombia, Ibague-Espinal for logistic support with the parasitology laboratory. Luis Carlos Medina, Sebastián Quijano, and Juan Pablo Monrroy of Semillero de Investigación en Fauna Silvestre provided support for field trips. We are grateful to Carlos Ignacio Piña for his review and comments for the improvement of the final document. In this study, the authors participated as follows: CM-R, LV, and FS carried out the sampling in the field and the laboratory analyzes. MP supported laboratory analyses. CM-R and GP-S analyzed and interpreted the data and wrote the manuscript. This study was carried out under the collection permit for the Universidad of Tolima, Resolution No. 3758 of 16 Nov 2016 of Corporación Autónoma Regional del Tolima.
REFERENCES
1.
Acosta
I.C.L.,
Martins
T.F.,
Nóbrega
Y.C.,
Mantovani
T.C.,
Silva-Soares
T.,
Santos
M.R.D., …
Labruna
M.B. 2019. First record of
Amblyomma rotundatum Koch, 1844 (Acari: Ixodidae) parasitizing wild
Caiman latirostris (Reptilia: Crocodylidae) in the Atlantic rainforest biome, southeastern Brazil.
Herpetology Notes
12:9–11.
Google Scholar
2.
Andreotti
R.,
Koller
W.,
García
M. 2016. Carrapatos: Protocolos e Técnicas para Estudo. Embrapa, Brasilia.
Google Scholar
3.
Barros-Battesti
D.M.,
Arzua
M.,
Bechara
G.H. 2006. Carrapatos de importância médico-veterinária da região neotropical: um guia ilustrado para identificação de espécies. Vox/ICTTD-3/Butantan, São Paulo.
Google Scholar
4.
Bocourt
M.F. 1876. Note sur quelques reptiles de l'isthme de Tehuantepec (Mexique) donnés par M. Sumichrast au muséum.
Journal de Zoologie
5:386–411.
Google Scholar
5.
Brumpt
E. 1922. Précis de Parasitologie. Masson, Paris.
Google Scholar
6.
Brumpt
E. 1932. Longevité du virus de la fièvre boutonneuse (
Rickettsia conorii, n. sp.) chez la tique
Rhipicephalus sanguineus
.
Compte rendu des séances de la Société de Biologie
110:1119–1202.
Google Scholar
7.
Burridge
M.J. 2001. Ticks (Acari: Ixodidae) spread by the international trade in reptiles and their potential roles in dissemination of diseases.
Bulletin of Entomological Research
91:3–23.
DOI
Google Scholar
8.
Cabezas-Cruz
A.,
Vayssier-Taussat
M.,
Greub
G. 2018. Tick-borne pathogen detection: what's new?
Microbes and Infection
20:441–444.
DOI
Google Scholar
9.
Cable
J.,
Barber
I.,
Boag
B.,
Ellison
A.R.,
Morgan,
E.R.,
Murray
K.,
Booth
M. 2017. Global change, parasite transmission and disease control: lessons from ecology.
Philosophical Transactions of the Royal Society B
372:1–17.
DOI
Google Scholar
10.
Chaeychomsri
W.,
Yamkong
S.,
Chaeychomsri
S.,
Siruntawineti
J. 2016. Effects of large volume crocodile blood collection on hematological values of Siamese Crocodiles (
Crocodylus siamensis).
Journal of Advanced Agricultural Technologies
3:252–257.
DOI
Google Scholar
11.
Charruau
P.,
Pérez-Flores
J.,
Cedeño-Vázquez
J.R.,
González-So- lis
D.,
González-Desales
G.A.,
Monroy-Vilchis
O.,
Desales-Lara
M.A. 2016. Occurrence of
Amblyomma dissimile on wild crocodylians in southern Mexico.
Diseases of Aquatic Organisms
121:167–171.
DOI
Google Scholar
12.
Colwell
D.D.,
Dantas-Torres
F.,
Otranto
D. 2011. Vector-borne parasitic zoonoses: emerging scenarios and new perspectives.
Veterinary Parasitology
1821:14–21.
DOI
Google Scholar
13.
Cope
E.D. 1868. On the crocodilian genus Perosuchus.
Proceedings of the Academy of Natural Sciences of Philadelphia
20:203.
Google Scholar
14.
Cortés-Vecino
J. 2011. Garrapatas: estado actual y perspectivas.
Biomédica
31:3–315.
Google Scholar
15.
Cortolima, Corpoica, Universidad del Tolima. (2006). Plan de Ordenación y Manejo de la Cuenca Hidrográfica Mayor del Río Prado. Informe Final. Cortolima, Ibagué.
Google Scholar
16.
Cowdry
E.V. 1925. Studies on the etiology of heartwater: I. Observation of a rickettsia,
Rickettsia ruminantium (n. sp.), in the tissues of infected animals.
The Journal of Experimental Medicine
42:231–252.
Google Scholar
17.
Cuvier
G. 1807. Sur les diffèrentes espèces de crocodilies vivans et sur leurs caractères distinctifs.
Annales Muséum National D'Histoire Naturelle, pár les professeurs de cet establishment 10:8–86.
Google Scholar
18.
Dantas-Torres
F. 2010. Biology and ecology of the brown dog tick,
Rhipicephalus sanguineus
.
Parasites & Vectors
3:1–11.
DOI
Google Scholar
19.
Dantas-Torres,
F.,
Otranto,
D. 2011.
Rhipicephalus sanguineus on dogs: relationships between attachment sites and tick developmental stages.
Experimental and Applied Acarology
53:389–397.
DOI
Google Scholar
20.
Das
G.,
Neog
R.,
Sarmah
P.C.,
Pathak
P. 2017. Study of biology of brown dog tick,
Rhipicephalus sanguineus
.
North-East Veterinarian
16:29–31.
Google Scholar
21.
Domínguez-Laso
J.,
Hinojosa-Falcón
O.,
Padilla-Paz
S. 2011. Método de marcaje y recaptura de ejemplares (MRE). Pp. 125–175, in
Sánchez Herrera
O.,
López Segurajáuregui
G.,
García Naranjo Ortiz De La Huerta
A.,
Benítez Díaz
H. (Eds.), Programa de Monitoreo del Cocodrilo de Pantano (
Crocodylus moreletii) México-Belice-Guatemala. México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México.
Google Scholar
22.
Donatien
A.,
Lestoquard
F. 1935. Existence en Algerie d'une Rickettsia du chien.
Bulletin de la Société de Pathologie Exotique
28:418–419.
Google Scholar
23.
Duméril
A.,
Bibron
G. 1851. Sauriens ou lézards. Pp. 26–197, in
Duméril
M.C.,
Duméril
A. (Eds.), Catalogue Méthodique de la Collection des Reptiles. Gide et Baudry, Paris.
Google Scholar
24.
Duméril
A.M.C.,
Bibron
G.,
Duméril
A. 1854. Erpétologie Genérale ou Histoire Naturelle Complète des Reptiles. Tome Septième. Duexiéme Partie. Librarie Enclyclopedique de Roret, Paris.
DOI
Google Scholar
25.
Estrada-Peña
A.,
De la Fuente
J. 2014. The ecology of ticks and epidemiology of tick-borne viral diseases.
Antiviral Research
108:104–128.
DOI
Google Scholar
26.
Fleming
J.G.,
Fontenot
D.K. 2014. Crocodilians (Crocodiles, Alligators, Caiman, Gharial). Pp. 38–48, in
Miller
RE.,
Murray
E.,
Fowler
ME. (Eds.). Fowler's Zoo and Wild Animal Medicine, Volume 8. Elsevier Health Sciences, St. Louis.
Google Scholar
27.
Foggie
A. 1949. Studies on tick-borne fever in sheep.
Journal of General Microbiology
3:1.
Google Scholar
28.
Fournier
P.E.,
Takada
N.,
Fujita
H.,
Raoult
D. 2006.
Rickettsia tamurae sp. nov., isolated from
Amblyomma testudinarium ticks.
International journal of systematic and evolutionary microbiology
56:1673–1675.
DOI
Google Scholar
29.
Gray
J.E. 1862. A synopsis of the species of alligator.
Annals and Magazine of Natural History, Series 3 59:327–331.
DOI
Google Scholar
30.
Gray
J.,
Dantas-Torres
F.,
Estrada-Peña
A.,
Levin
M. 2013. Systematics and ecology of the brown dog tick,
Rhipicephalus sanguineus
.
Ticks and Tick-borne Diseases
4:171–180.
DOI
Google Scholar
31.
Guglielmone
A.A.,
Nava
S. 2006. Argentinean ticks of the genus
Amblyomma (Acari: Ixodidae): distribution and hosts.
Revista de Investigaciones Agropecuarias
35:133–153.
Google Scholar
32.
Guzmán-Cornejo
C.,
Robbins
R.G.,
Guglielmone
A.A.,
Montiel-Parra
G.,
Pérez
T.M. 2011. The
Amblyomma (Acari: Ixodida: Ixodidae) of Mexico: identification keys, distribution and hosts.
Zootaxa
2998:16–38.
Google Scholar
33.
Harvey
J.W.,
Simpson
C.F.,
Gaskin
J.M. 1978. Cyclic thrombocytopenia induced by a Rickettsia-like agent in dogs.
Journal of Infectious Diseases
137:182–188
DOI
Google Scholar
34.
Huchzermeyer
F.W. 2003. Crocodiles: Biology, Husbandry and Diseases. CABI Publishing, Wallingford.
Google Scholar
35.
James
S.P. 1905. A new leucocytozoon of dogs.
British Medical Journal
1:1361.
DOI
Google Scholar
36.
Jongejan
F. 1992. Experimental transmission of
Cowdria ruminantium (Rickettsiales) by the American reptile tick
Amblyomma dissimile Koch, 1844.
Experimental & Applied Acarology
15:117–121.
DOI
Google Scholar
37.
Jongejan
F.,
Uilenberg,
G. 2004. The global importance of ticks.
Parasitology
129:117–121.
DOI
Google Scholar
38.
Kiel
J.L.,
Alarcon
R.M.,
Parker
J.E.,
Vivekananda
J.,
Gonzalez
Y.B.,
Stribling
L.J.,
Andrews
C.J. 2006. Emerging tick-borne disease in African vipers caused by a
Cowdria-like organism.
Annals of the New York Academy of Sciences
1081:434–442.
DOI
Google Scholar
39.
Koch
C.L. 1844. Systematische Ubersicht uber die Ordnung der Zecken.
Archiv für Naturgeschichte
10:217–239.
DOI
Google Scholar
40.
Koch
H.G.,
Sauer
J.R. 1984. Quantity of blood ingested by four species of hard ticks (Acari: Ixodidae) fed on domestic dogs.
Annals of the Entomological Society of America
77:142–146.
DOI
Google Scholar
41.
Kwak
M.L.,
Foo
M.,
Pocklington
K.,
Hsu
C.D.,
Cheong
W.,
How
C.B., …
Tahir,
M.G. 2019. Tick–crocodilian interactions: a review, with the first record of tick (Acari: Ixodidae) infestation in the saltwater crocodile (
Crocodylus porosus), and a concise host-parasite index.
Experimental and Applied Acarology
78:127–132.
DOI
Google Scholar
42.
Labruna
M.B.,
Camargo
L.M.A.,
Terrassini
F.A.,
Ferreira
F.,
Schumaker
T.T.,
Camargo
E.P. 2005. Ticks (Acari: Ixodidae) from the state of Rondônia, western Amazon, Brazil.
Systematic and Applied Acarology
10:17–32.
DOI
Google Scholar
43.
Labruna
M.B.,
Gerardi
M.,
Krawczak
F.S.,
Moraes-Filho
J. 2017. Comparative biology of the tropical and temperate species of
Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) under different laboratory conditions.
Ticks and Tick-borne Diseases
8:146–156.
DOI
Google Scholar
44.
Lah
E.F.C.,
Yaakop
S.,
Ahamad
M.,
George
E.,
Nor
S.M. 2016. Precise identification of different stages of a tick,
Ixodes granulatus Supino, 1897 (Acari: Ixodidae).
Asian Pacific Journal of Tropical Biomedicine
6:597–604.
DOI
Google Scholar
45.
Latrofa
M.S.,
Dantas-Torres
F.,
Giannelli
A.,
Otranto
D. 2014. Molecular detection of tick-borne pathogens in
Rhipicephalus sanguineus group ticks.
Ticks and Tick-borne Diseases
5:943–946.
DOI
Google Scholar
46.
Latreille
P.A. 1806. Genera crustaceorum et insectorum secundum ordinem naturalem in familias disposita, iconibus exemplisque plurimis explicata. Tomus primus. A. Koenig, Parisiis.
DOI
Google Scholar
47.
Laurenti
J.N. 1768. Specimen medicum, exhibens synopsin reptilium emendatam cum experimentis circa venena et antidota reptilium austriacorum. Joan. Thom. Nob. de Trattern, Viennae.
DOI
Google Scholar
48.
Lima
R.S.,
Gianizella
S.L. 2015. Amostragem ambiental de carrapatos ixodídeos no fragmento florestal do campus da UFAM de Manaus. Pp. 23–24, inAnonymous, Livro de Resumos do III Simpósio CEN-BAM e PPBio Amazonia Occidental. Centro de Estudos Integrados da Biodiversidade Amazônica, Manaus.
Google Scholar
49.
Linnaeus
C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differential, synonymis, locis, Tomus I. Editio decima, reformata. Laurentiis Salvii, Holmiae.
DOI
Google Scholar
50.
Luz
H.R.,
Silva-Santos
E.,
Costa-Campos
C.E.,
Acosta
I.,
Martins
T.F.,
Muñoz-Leal,
S., …
Labruna,
M.B. 2018. Detection of
Rickettsia spp. in ticks parasitizing toads (
Rhinella marina) in the northern Brazilian Amazon.
Experimental and Applied Acarology
75:309–318.
Google Scholar
52.
Martins
T.F.,
Lado
P.,
Labruna
M.B.,
Venzal
J.M. 2014. El género
Amblyomma (Acari: Ixodidae) en Uruguay: especies, distribución, hospedadores, importancia sanitaria y claves para la determinación de adultos y ninfas.
Revista Veterinaria Montevideo
51:26–41.
Google Scholar
53.
Merchant
M.,
Britton,
A. 2006. Characterization of serum complement activity of saltwater (
Crocodylus porosus) and freshwater (
Crocodylus johnstoni) crocodiles.
Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
143:488–493.
DOI
Google Scholar
54.
Miranda
J.,
Portillo
A.,
Oteo
J.A.,
Mattar
S. 2012.
Rickettsia sp. strain colombianensi (Rickettsiales:
Rickettsiaceae): a new proposed
Rickettsia detected in
Amblyomma dissimile (Acari: Ixodidae) from iguanas and free-living larvae ticks from vegetation.
JournalofMedical Entomology
49:960–965.
DOI
Google Scholar
55.
Mora
O. 2009. Caracterización de los principales hemoparásitos de cocodrilo (
Crocodylus acutus y
Crocodylus moreletii) en condiciones de cautiverio y vida libre en Yucatán, México. Tesis de licenciatura. Universidad Pedagógica y Tecnológica de Colombia, Colombia.
Google Scholar
56.
Morais
D.H.,
Strüssmann
C.,
Carvalho
V.T.,
Kawashita-Ribeiro
R.A. 2010. First record of
Amblyomma rotundatum Koch, 1844 (Acari:
Ixodidae) parasitizing
Paleosuchus palpebrosus Cuvier, 1807 (Reptilia:
Crocodylidae), in the western border of Pantanal, Mato Grosso do Sul, Brazil.
Herpetology Notes
3:133.
Google Scholar
57.
Neumann
L.G. 1899. Révision de la famille des ixodidés (3°mémorire).
Mémoires de la Société Zoologique de France
12:107–294.
Google Scholar
58.
Oteo Revuelta
J.A. 2016. Espectro de las enfermedades transmitidas por garrapatas.
Pediatría Atención Primaria
18:47–51.
Google Scholar
59.
Pallus
P.S. 1772. Spicilegia Zoologica, quibus novae imprimis et obscurae animalium species iconibus, descriptionibus atque commentariis illustrantur. Fasciculus nonus. Gottl. August. Lange, Berolini.
DOI
Google Scholar
60.
Paz
G.F.,
Ribeiro
M.F.B.,
Michalsky
É.M.,
da Rocha
A.C.V.M.,
França-Silva
J.C.,
Barata
R.A., …
Dias
E.S. 2010. Evaluation of the vectorial capacity of
Rhipicephalus sanguineus (Acari: Ixodidae) in the transmission of canine visceral leishmaniasis.
Parasitology Research
106:523–528.
DOI
Google Scholar
61.
Peter
T.F.,
Burridge
M.J.,
Mahan
S.M. 2002.
Ehrlichia ruminantium infection (heartwater) in wild animals.
Trends in Parasitology
18:214–218.
DOI
Google Scholar
62.
Peralta
A.S.L.,
Amorim
M.,
Gazeta
G.S.,
Serra-Freire
N.M. 1995. Jacaré coroa e iguana: dois novos hospedeiros para
Amblyomma rotundatum no Parque do MPEG. P. 20, inAnonymous, Congresso da Sociedade de Zoológicos do Brasil 19. Anais da Sociedade de Zoológicos do Brasil, Foz do Iguaçu.
Google Scholar
63.
Philip
R.N.,
Casper
E.A.,
Anacker
R.L.,
Cory
J.,
Hayes
S.F.,
Burg- dorfer
W.,
Yunker
C.E. 1983.
Rickettsia bellii sp. nov.: a tick-borne rickettsia, widely distributed in the United States, that is distinct from the spotted fever and typhus biogroups.
International Journal of Systematic and Evolutionary Microbiology
33:94–106.
DOI
Google Scholar
64.
Piana
G.P.,
Galli-Valerio
B. 1895. Su di un'infezione del cane con parassiti endoglobulari nel sangue.
Nota Preventiva. Il Moderno Zooiatro
6:163–9.
Google Scholar
65.
Pietzsch
M.,
Quest
R.,
Hillyard
P.D.,
Medlock
J.M.,
Leach
S. 2006. Importation of exotic ticks into the United Kingdom via international trade in reptiles.
Experimental & Applied Acarology
38:59–65.
DOI
Google Scholar
66.
Pizano
C.,
García
H. 2014. El Bosque Seco Tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá D.C.
Google Scholar
67.
Polanco-Echeverry
D.N.,
Ríos-Osorio
L.A. 2016. Aspectos biológicos y ecológicos de las garrapatas duras.
Revista Corpoica Ciencia y Tecnología Agropecuaria
17:81–95.
DOI
Google Scholar
68.
Rainwater
T.R.,
Platt
S.G.,
Robbins
R.G.,
McMurry
S.T. 2001. Ticks from a Morelet's Crocodile in Belize.
Journal of Wildlife Diseases
37:836–839.
DOI
Google Scholar
69.
Rodríguez-Vivas
R.I.,
Apanaskevich
D.A.,
Ojeda-Chi
M.M.,
Trinidad-Martínez
I.,
Reyes-Novelo
E.,
Esteve-Gassent
M.D.,
De León
A.P. 2016. Ticks collected from humans, domestic animals, and wildlife in Yucatan, Mexico.
Veterinary parasitology
215:106–113.
DOI
Google Scholar
70.
Sanches
G.S.,
Évora
P.M.,
Mangold
A.J.,
Jittapalapong
S.,
Rodriguez-Mallon
A.,
Guzmán
P.E., …
Camargo-Mathias
M.I. 2016. Molecular, biological, and morphometric comparisons between different geographical populations of
Rhipicephalus sanguineus sensu lato (Acari: Ixodidae).
Veterinary Parasitology
215:78–87.
DOI
Google Scholar
71.
Santodomingo
A.,
Cotes-Perdomo
A.,
Foley
J.,
Castro
L.R. 2018. Rickettsial infection in ticks (Acari:
Ixodidae) from reptiles in the Colombian Caribbean.
Ticks and Tick-borne Diseases
9:623–628.
DOI
Google Scholar
72.
Schneider
J.G. 1801. Historiae Amphibiorum naturalis et literariae. Fasciculus secundus continens Crocodilos, Scincos, Chamaesauras, Boas, Pseudoboas, Elapes, Angues, Amphisbaenas et Caecilias. Fried. Frommann, Jenae.
DOI
Google Scholar
73.
Schumaker
T.T.S.,
Barros
D.M. 1994. Notes on the biology of
Amblyomma dissimile Kock, 1844 (Acari: Ixodida) on
Bufo marinus (Linnaeus, 1758) from Brazil.
Memórias do Instituto Oswaldo Cruz
89:29–31.
DOI
Google Scholar
74.
Schwetz
J. 1927. Contribution à l'étude des Ixodidae (tiques) du Congo Belge. (d'après les collections du Musée Royal d'Histoire Naturelle de Bruxelles) (deuxiéme note)
Revue de Zoologie Africaine
15:73–80.
Google Scholar
75.
Scott
J.D.,
Durden
L.A. 2015.
Amblyomma dissimile Koch (Acari: Ixodidae) parasitizes bird captured in Canada.
Systematic and Applied Acarology
20:854–860.
DOI
Google Scholar
76.
Simser
J.A.,
Palmer
A.T.,
Fingerle
V.,
Wilske
B.,
Kurtti
T.J.,
Munderloh
U.G. 2002.
Rickettsia monacensis sp. nov., a spotted fever group
Rickettsia, from ticks (
Ixodes ricinus) collected in a European city park.
Applied and Environmental Microbiology
68:4559–4566.
DOI
Google Scholar
77.
Siroski
P.A.,
Piña
C.I.,
Larriera
A.,
Merchant
M.E.,
Di Conza
J. 2009. Plasma activity of the broad-snouted caiman (
Caiman latirostris).
Zoological Studies
48:238–242.
Google Scholar
78.
Siroski
P.A.,
Merchant
M.E.,
Poletta
G.L.,
Larriera
A.,
Ortega
H.H. 2013. Detection and characterization of Phospholipase A2 (PLA2) in
Caiman latirostris and
Caiman yacare plasma.
Zoological Science
30:35–41.
DOI
Google Scholar
79.
Socolovschi
C.,
Gaudart
J.,
Bitam
I.,
Huynh
T.P.,
Raoult
D.,
Parola
P. 2012. Why are there so few
Rickettsia conorii conorii-infected
Rhipicephalus sanguineus ticks in the wild?
PLoS Neglected Tropical Diseases
6:6.
DOI
Google Scholar
80.
Spix
J.B.v. 1825. Animalia nova sive species novae lacertarum, quas in itinere per Brasiliam annis MDCCCXVII-MDCCCXX jussu et auspicius Maximiliani Josephi I Bavariae Regis. F.S. Hübschmanni, Monachii.
DOI
Google Scholar
81.
Szabó
M.P.J.,
Pinter
A.,
Labruna
M.B. 2013. Ecology, biology and distribution of spotted-fever tick vectors in Brazil.
Frontiers in Cellular and Infection Microbiology
3:27.
DOI
Google Scholar
82.
Tellez
M. 2014. A Checklist of Host–Parasite Interactions of the Order Crocodylia, Volume 136. University of California Press, Los Angeles.
Google Scholar
83.
Voltzit
O.V. 2007. A review of neotropical
Amblyomma species (Acari: Ixodidae).
Acarina
15:3–134.
Google Scholar
84.
Wikel
S.K.
1984. Immunomodulation of host responses to ectoparasite infestation an overview.
Veterinary parasitology
14:321–339.
DOI
Google Scholar
85.
Witter
R.,
Martins
T.F.,
Campos
A.K.,
Melo
A.L.,
Corrêa
S.H.,
Morgado
T.,
Pacheco
C. 2016. Rickettsial infection in ticks (Acari: Ixodidae) of wild animals in midwestern Brazil.
Ticks and Tick-borne Diseases
7:415–423.
DOI
Google Scholar
86.
Young
H.S.,
Parker
I.M.,
Gilbert
G.S.,
Guerra
A.S.,
Nunn,
C.L. 2017. Introduced species, disease ecology, and biodiversity–disease relationships.
Trends in Ecology & Evolution
32:41–54.
DOI
Google Scholar
87.
Zemtsova
G.,
Killmaster
L.F.,
Mumcuoglu
K.Y.,
Levin
M.L. 2010. Co-feeding as a route for transmission of
Rickettsia conorii israelensis between
Rhipicephalus sanguineus ticks.
Experimental and Applied Acarology
52:383–392.
DOI
Google Scholar
88.
Zemtsova
G.E.,
Apanaskevich
D.A.,
Reeves
W.K.,
Hahn
M.,
Snellgrove
A.,
Levin
M.L. 2016. Phylogeography of
Rhipicephalus sanguineus sensu lato and its relationships with climatic factors.
Experimental and Applied Acarology
69:191–203
DOI
Google Scholar
89.
Zimmerman
L.M.,
Vogel
L.A.,
Bowden
R.M. 2010. Understanding the vertebrate immune system: insights from the reptilian perspective.
Journal of Experimental Biology
213:661–671.
DOI
Google Scholar