BioOne.org will be down briefly for maintenance on 12 February 2025 between 18:00-21:00 Pacific Time US. We apologize for any inconvenience.
How to translate text using browser tools
21 October 2019 Effect of Hydrogen-Rich Water on Radiation-Induced Cognitive Dysfunction in Rats
Mengya Liu, Hui Yuan, Jingjing Yin, Ruoqi Wang, Jianbo Song, Bo Hu, Jianguo Li, Xiujun Qin
Author Affiliations +
Abstract

The goal of this work was to determine whether hydrogen-rich water (HRW) could attenuate radiation-induced cognitive dysfunction in rats and to explore the underlying mechanisms. Rats received 30 Gy whole-brain irradiation using a 6-MeV electron beam. Either purified water or HRW (0.8–0.9 ppm) was administrated at 10 min prior to irradiation, as well as a daily HRW treatment after irradiation for 30 consecutive days. The Morris water maze was used to test spatial memory in the rats. The concentration of glutathione (GSH), malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG) and the super-oxidedismutase (SOD) activity in cerebral cortex, as well as brain-derived neurotrophic factor (BDNF) level in serum, were measured. Immunofluorescence staining was adopted to detect proliferating cells. The expression of BDNF-TrkB pathway-related genes and proteins were detected using qRT-PCR and Western blot. Models of cognitive dysfunction were successfully established using a 30 Gy dose of ionizing radiation. Compared to the radiation treated group, the radiation-HRW treated group showed significantly decreased escape latency (P < 0.05), but increased retention time, swimming distance of original platform quadrant (P < 0.05) and number of platform crossings (P < 0.05). Furthermore, the SOD, GSH (P < 0.05) and BDNF (P < 0.05) levels in the radiation-HRW treated group were higher compared to the radiation treated group. The MDA and 8-OHdG levels (P < 0.05) were decreased in the radiation-HRW treated group when compared to the radiation treated group. Additionally, treatment with HRW increased the number of BrdU+NeuN+ cells in the radiation treated group. The mRNA and protein levels of BDNF and TrkB (P < 0.05) in radiation-HRW treated group was higher than that in the radiation treated group. Collectively, our study indicates that HRW has a protective effect on radiation-induced cognitive dysfunction, and that the possible mechanisms mainly involve anti-oxidative and anti-inflammatory reactions, and its protection of newborn neurons by regulating the BDNF-TrkB signaling pathway.

©2020 by Radiation Research Society. All rights of reproduction in any form reserved.
Mengya Liu, Hui Yuan, Jingjing Yin, Ruoqi Wang, Jianbo Song, Bo Hu, Jianguo Li, and Xiujun Qin "Effect of Hydrogen-Rich Water on Radiation-Induced Cognitive Dysfunction in Rats," Radiation Research 193(1), 16-23, (21 October 2019). https://doi.org/10.1667/RR15464.1
Received: 28 June 2019; Accepted: 1 October 2019; Published: 21 October 2019
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top