Alsbeih, G., Al-Harbi, N., Al-Buhairi, M., Al-Hadyan, K. and Al-Hamed, M. Association between TP53 Codon 72 Single-Nucleotide Polymorphism and Radiation Sensitivity of Human Fibroblasts. Radiat. Res. 167, 535–540 (2007).
Inherent radiosensitivity varies widely between individuals. We hypothesized that amino acid substitution variants in two highly radiation-responsive proteins, TP53 (p53) and CDKN1A (p21, Waf1, Cip1), are associated with and could explain individual variations in radiosensitivity. The two non-synonymous single-nucleotide polymorphisms (SNPs) TP53 codon 72 Arg/Pro G>C and CDKN1A codon 31 Ser/Arg C>A were genotyped in 92 normal fibroblast cell strains of different radiosensitivity. The clonogenic surviving fraction at 2 Gy (SF2) ranged between 0.15 and 0.50 (mean = 0.34, SD = 0.08). The mean SF2 was used to divide the cell strains into radiosensitive (45) and normal groups (47). A significant association was observed between SF2 and the TP53 codon 72 haplotype (C compared to G, P = 0.01). No association was observed between CDKN1A codon 31 haplotype and radiosensitivity (P = 0.86). The variant TP53 Arg72 allele was associated with a decrease in radiosensitivity, presumably due to suboptimal function leading to less stringent control of cell division. We conclude that certain SNPs in susceptible genes can influence cellular radiation response. Such risk alleles could ultimately be used as predictive markers for radiosensitivity to help stratifying individuals during assessment of risk of radiation exposure.