During the late 20th Century, due to decreases in both contamination and persecution, bald eagle (Haliaeetus leucocephalus) populations increased dramatically. Currently, mechanisms regulating eagle populations are not well understood. To examine potential regulating processes in the Pacific Northwest, where eagles are no longer primarily regulated by contaminants or direct persecution, we examined bald eagle reproductive success, breeding populations, winter populations, mortality, and salmon stream use. Wintering and breeding eagle populations in south-coastal British Columbia (BC) quadrupled between the early 1980s and the late 1990s, and have since stabilized. Density-dependent declines in reproduction occurred during 1986–2009, but not through changes in site quality. Mid-winter survival was crucial as most mortality occurred then, and models showed that density-dependent reductions in population growth rates were partially due to reduced survival. Wintering eagles in British Columbia fed heavily on chum salmon (Oncorhynchus keta) runs, and then switched to birds in late winter, when mortality was highest. Eagles tended to arrive after the peak in salmon availability at streams in BC as part of a migration associated with salmon streams from Alaska to northern Washington. Eagles were most abundant in southern BC during cold Alaskan winters and in years of high chum salmon availability. We suggest that eagle populations in the Pacific Northwest are currently partially limited by density on the breeding grounds and partially by adult mortality in late winter, likely due to reduced late winter salmon stocks forcing eagles to exploit more marginal prey supplies. Larger eagle populations have affected some local prey populations.