The presence of avian pox in endemic birds in the Galápagos Islands has led to concern that the health of these birds may be threatened by avipoxvirus introduction by domestic birds. We describe here a simple polymerase chain reaction–based method for identification and discrimination of avipoxvirus strains similar to the fowlpox or canarypox viruses. This method, in conjunction with DNA sequencing of two polymerase chain reaction–amplified loci totaling about 800 bp, was used to identify two avipoxvirus strains, Gal1 and Gal2, in pox lesions from yellow warblers (Dendroica petechia), finches (Geospiza spp.), and Galápagos mockingbirds (Nesomimus parvulus) from the inhabited islands of Santa Cruz and Isabela. Both strains were found in all three passerine taxa, and sequences from both strains were less than 5% different from each other and from canarypox virus. In contrast, chickens in Galápagos were infected with a virus that appears to be identical in sequence to the characterized fowlpox virus and about 30% different from the canarypox/Galápagos group viruses in the regions sequenced. These results indicate the presence of canarypox-like viruses in endemic passerine birds that are distinct from the fowlpox virus infecting chickens on Galápagos. Alignment of the sequence of a 5.9-kb region of the genome revealed that sequence identities among Gal1, Gal2, and canarypox viruses were clustered in discrete regions. This indicates that recombination between poxvirus strains in combination with mutation led to the canarypox-like viruses that are now prevalent in the Galápagos.