Vibrio cholerae may cause diarrheal diseases and wound infections, both of which have the potential to be fatal. Transmission to humans is often linked to consumption of contaminated shellfish/drinking water or dermal exposure to water (e.g. when swimming). In this study, we investigated whether different isolates of Vibrio cholerae differ in terms of accumulation, persistence, and viability when encountering blue mussels (Mytilus edulis). Mussel uptake and elimination of three different V. cholerae strains were compared: one fatal clinical non-O1/O139 isolate, one highly potent El Tor biotype, and one marine strain isolated from blue mussels. The results showed that the uptake of the marine strain was significantly higher than the clinical strain, but the elimination process of the marine strain was also more efficient. The El Tor strain was not at all ingested by the mussels. In addition, the survival of bacteria when incubated together with M. edulis hemocytes was tested in vitro. The viability of clinical strains was unaffected by the presence of hemocytes, and the marine strains were even more resistant and able to multiply. We conclude that the highly virulent El Tor biotype was not taken up by the mussels and could thereby escape the mussels' elimination process. The potentially fatal non-O1/O139 V. cholerae strain may accumulate in low numbers, but could be very persistent in mussels.