Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The insect chemoreceptor superfamily, consisting of the odorant receptor (Or) and gustatory receptor (Gr) families, exhibits patterns of evolution ranging from highly conserved proteins to lineage-specific gene subfamily expansions when compared across insect suborders and orders. Here their evolution across the timespan of 25 million years is examined which yield orthologous divergences ranging from 5–50%. They also reveal the beginnings of lineage-specific gene subfamilies as multiple duplications of particular gene lineages in either or both Drosophila melanogaster and D. pseudoobscura (Frolova and Astaurov) (Diptera: Drosophilidae). Gene losses and pseudogenes are similarly evident in both lineages, and even in closer comparisons of D. melanogaster with D. yakuba, leaving these species with roughly similar numbers of chemoreceptors despite considerable gene turnover. The large range of divergences and gene duplications provide abundant raw material for studies of structure and function in this novel superfamily, which contains proteins that evolved to bind specific ligands that mediate much of the ecology and mating behavior of insects.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere