Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Interactions among individuals in social groups lead to the emergence of collective behaviour at large scales by means of multiplicative non-linear effects. Group foraging, nest building and task allocation are just some well-known examples present in social insects. However the precise mechanisms at the individual level that trigger and amplify social phenomena are not fully understood. Here we show evidence of complex dynamics in groups of the termite, Cornitermes cumulans (Kollar) (Isoptera: Termitidae), of different sizes and qualitatively compare the behaviour observed with that exhibited by agent-based computer models. It is then concluded that certain aspects of social behaviour in insects have a universal basis common to interconnected systems and that this may be useful for understanding the temporal dynamics of systems displaying social behaviour in general.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere