Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Fireflies (Coleoptera: Lampyridae) emit various types of light that differ among species and populations of the same species. Their lights are assumed to be biological properties that play important ecological and evolutionary roles. Some species in the Lampyridae emit periodic luminescence, the patterns of which are characterized by species-specific intervals. In previous work, it was predicted that the nitric oxide (NO) regulates the oxygen supply required for the bioluminescence reaction of fireflies. Here, the expression of the NO synthase (NOS) mRNA in some fireflies was examined to verify the predictive model of nitric-oxide-mediated flash control in these insects. The expression of the nos gene in the lantern organ was observed not only in nocturnal flashing species but also in diurnal non-flashing species. It was shown that the expression levels of nos were higher in the lantern of Luciola cruciata (Motschulsky) larvae, which that emits continuous light, than in other body parts, although expression in the lantern of the adults, who flash periodically, was not high. Furthermore, there was no significant difference in expression levels among adults of Luciola cruciata characterized by different flashing intervals. The data do not support the model of an NO-mediated flash control mechanism, during which oxygen becomes available for the luciferin-luciferase reaction through NO-mediated inhibition of mitochondrial respiration. It is also indicated that flash patterns do not co-vary with NOS production. However, high nos expression in the larval lantern suggests that NO may play a role in producing continuous light by functioning as a neurotransmitter signal for bioluminescence.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere