Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Musca domestica L. (Diptera: Muscidae), the housefly, exhibits unique immune defenses and can produce antibacterial substances upon stimulation with bacteria. On the basis of the cDNA library constructed using the suppression subtractive hybridization method, a 1188—bp antibacterial substance gene, which we named AS566, was amplified by rapid amplification of cDNA ends from M. domestica larva stimulated with Salmonella pullorum (Enterobacteriaceae: Salmonella). In this study, the full-length AS566 gene was cloned and inserted into a His-tagged Escherichia coli (Enterobacteriaceae: Escherichia) prokaryotic expression system to enable production of the recombinant protein. The recombinant AS566 protein was purified in denatured form from inclusion bodies and renatured to obtain functionally active AS566 protein. The bacteriostatic activity of the recombinant purified AS566 protein was assessed using the Oxford plate assay system and the results indicated that AS566 had antibacterial activity against six bacteria, including an E. coli clinical isolate, S. pullorum, Streptococcus bovis (Streptococcaceae: Streptococcus), Streptococcus suis, and Staphylococcus aureus (Staphylococcaceae: Staphylococcus) in vitro. The antibacterial activity of AS566 toward Gram— bacteria was two times greater than that against Gram bacteria. The sequencing results and BLAST analysis showed that the antibacterial substance gene AS566 was not homologous to any other antibacterial substance genes in GenBank. The antibacterial mechanisms of the newly discovered AS566 protein warrant further study.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere