Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Natural populations of Boettcherisca (Sarcophaga) peregrina Robineau-Desvoidy (Diptera: Sarcophagidae) were maintained for 20 generations and reared either on unpolluted diet or on polluted diet containing copper at a median lethal concentration (LC50) determined every five generations. This resulted in two reliable strains: the relative susceptible strain (S) and the copper-resistant strain (R). The metal accumulation, growth and development, reproduction, and antioxidant enzymes were analyzed in the two strains. The results showed that compared with the S strain, the R strain showed increased metal accumulation and fecundity of female adults. Regardless of whether larvae were fed on diet with or without Cu2 , the R strain showed higher activity of superoxide dismutase and glutathione S-transferase than the S strain, although without statistical significance. Moreover, the activity of superoxide dismutase and glutathione S-transferase increased when B. peregrina larvae were exposed to Cu2 at 100 µg/g but decreased when they were exposed to Cu2 at 800 µg/g. Larval catalase activity in the R strain was higher than in the S strain when larvae were fed on diet with or without Cu2 , although these differences were significant only at the 100 µg/g concentration. Moreover, the activity of catalase decreased when larvae were exposed to experimental Cu2 . Beyond all expectations, larval glutathione reductase activity was not significantly different between the two strains but changed slightly when larvae were exposed to experimental Cu2 . These results indicate that copper resistance in B. peregrina larvae is mediated by superoxide dismutase, catalase, and glutathione S-transferase. These results also help in establishing a physiological link between antioxidase activity and the resistance level of B. peregrina to copper.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere