Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Proteolytic activities in digestive system extracts from the larval midgut of the lesser mulberry pyralid, Glyphodes pyloalis Walker (Lepidoptera: Pyralidae), were analyzed using different specific peptide substrates and proteinase inhibitors. High proteolytic activities were found at pH 10.0 and a temperature of 50° C using azocasein as substrate. The trypsin was active in the pH range of 9.5– 12.0, with its maximum activity at pH 11.5. Ethylene diamine tetraacetic acid had the most inhibitory effect, and 44% inhibition was detected in the presence of this inhibitor. Phenyl methane sulfonyl floride and N-tosyl-L-phe chloromethyl ketone also showed considerable inhibition of larval azocaseinolytic activity, with 40.2 and 35.1% inhibition respectively. These data suggest that the midgut of larvae contains mainly metalloproteases and serine proteases, mainly chymotrypsin. The effect of several metal ions on the activity of proteases showed that NaCl, CaCl2, CoCl2 (5 and 10 mM), and MnCl2 (5mM) reduced the protease activity. The kinetic parameters of trypsin-like proteases using N-benzoyl-L-arg-p-nitroanilide as substrate indicated that the Km and Vmax values of trypsin in the alimentary canal were 50.5 ± 2.0 µM and 116.06 ± 1.96 nmol min-1 mg-1 protein, respectively. Inhibition assays showed only small amounts of cysteine proteases were present in the G. pyloalis digestive system. The midgut digestive protease system of G. pyloalis is as diverse as that of any of the other polyphagous lepidopteran insect species, and the midgut of larvae contains mainly metalloproteases. Moreover, serine proteases and chymotrypsin also play main roles in protein digestion. Characterization of the proteolytic properties of the digestive enzymes of G. pyloalis offers an opportunity for developing appropriate and effective pest management strategies via metalloproteases and chymotrypsin inhibitors.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere