Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
In the present study, the total hydroperoxides, catalase, glutathione-s-transferase, and ascorbic acid contents were determined in different developmental stages of the non-diapause and the diapause generation of the tropical tasar silkworm, Antheraea mylitta Drury (Lepidoptera: Saturniidae). The results showed stage-specific significantly higher levels of total hydroperoxides, catalase, and ascorbic acid contents in the non-diapause as compared to the diapause generation (p < 0.05). However, a significantly enhanced level of glutathione-S-transferase activity was observed in mature 5th instar larvae of the diapause generation (p < 0.05). In the case of pupae, significantly higher levels of total hydroperoxides, catalase, and glutathione-s-transferase activity were observed in the non-diapause generation (p < 0.05). These results could be the effect of intensive metabolic transformation that takes place in tissues of the non-diapause generation and causes increased production of reactive oxygen species, such as hydroperoxides. The results suggest that antioxidants play an important role in protecting cells against reactive oxygen species.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere