Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The strawberry tortricid, Acleris comariana Lienig and Zeller (Lepidoptera: Tortricidae) is an important pest in Danish strawberry production. Its most common parasitoid is Copidosomaaretas (Walker) (Hymenoptera: Chalcidoidea: Encyrtidae). To identify selective flowering plants that could be used to increase functional biodiversity, the longevity of C. aretas and its host A. comariana was assessed on 5 flowering species: buckwheat, Fagopyrum esculentum Moench (Caryophyllales: Polygonaceae); borage, Borago officinalis L. (Boraginaceae); strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae); phacelia, Phacelia tanacetifolia Bentham (Boraginaceae); and dill, Anethum graveolens L. (Apiales: Apiaceae). Dill was only tested with C. aretas. Sucrose and pollen served as positive controls, and pure water as a negative control. In a subsequent field experiment, A. comariana larval density was assessed at 1, 6, and 11 m distances from buckwheat flower strips in 3 fields. The proportion of field-collected larvae that were parasitized by C. aretas or fungi was assessed. Among the tested floral diets, buckwheat was superior for C. aretas, increasing its longevity by 1.4 times compared to water. Although buckwheat also increased longevity of A. comariana, its longevity and survival on buckwheat, borage, and strawberry was not significantly different, so buckwheat was chosen for field experiments. A. comariana densities in the 3 fields with sown buckwheat flower strips were 0.5, 4.0, and 8.3 larvae per m per row of strawberry respectively. Of the collected larvae, a total of 1%, 39%, and 65% were parasitized by C. aretas, respectively. The density of A. comariana and the proportion parasitized by C. aretas were highly significantly correlated. Distance from floral strips had no significant effect on either A. comariana larval density or on the proportion of individuals parasitized by C. aretas. Few other parasitoids emerged from collected larvae, and no larvae were infected by entomopathogenic fungi. Still, total A. comariana mortality was significantly affected by distance to flower strips, with the highest mortality near the flower strips. As no effect of buckwheat flower strips on C. aretas parasitism was found, the positive effect they had on A. comariana control stems from unknown mortality factors. As literature indicates that buckwheat for flower strips can augment a more complex suite of natural enemies, one such mortality factor could be a non-consumptive predator and/or parasitoid effect, but this requires further study. If confirmed, buckwheat may be utilized together with a selective food plant, once identified.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere