Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
In the past few decades, the mouse has been used as a mammalian model for hyperuricemia and gout, which has increased not only in prevalence, but also in clinical complexity, accentuated in part by a dearth of novel advances in treatments for hyperuricemia and gouty arthritis. However, the use of mice for the development of gouty therapeutic drugs creates a number of problems. Thus, identification and evaluation of the therapeutic effects of chemicals in an alternative animal model is desirable. In the present study, the effects of gouty therapeutic drugs on lowering the content of uric acid and inhibiting activity of xanthine oxidase were evaluated by using a silkworm model, Bombyx mori L. (Lepidoptera: Bombycidae). The results showed that the effectiveness of oral administration of various gouty therapeutic drugs to 5th instar silkworms is consistent with results for human. The activity of xanthine oxidase of silkworm treated with allopurinol was lower, and declined in a dose-dependent manner compared with control silkworms, while sodium bicarbonate failed at inhibiting the activity of xanthine oxidase. The concentration of uric acid in the both hemolymph and fat body declined by 90 and 95% at six days post-administration with 25 mg/mL of allopurinol, respectively (p < 0.01), while the concentration of uric acid in both the hemolymph and fat body also declined by 81 and 95% at six days post-administration with 25 mg/mL of sodium bicarbonate, respectively (p < 0.01). Moreover, the epidermis of silkworm treated with allopurinol or sodium bicarbonate became transparent compared with the negative control group. These results suggest that silkworm larva can be used as an animal model for screening and evaluation of gouty therapeutic drugs.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere