Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The sycamore lace bug, Corythucha ciliata (Say) (Hemiptera: Tingidae), is an important invasive exotic pest of Platanus (Proteales: Platanaceae) trees in China. The objective of this study was to determine the effects of temperature on C. ciliata in the laboratory so that forecasting models based on heat accumulation units could be developed for the pest. Development and fecundity of C. ciliata reared on leaves of London plane tree (Platanus × acerifolia) were investigated at seven constant temperatures (16, 19, 22, 26, 30, 33, and 36° C) and at a relative humidity of 80% with a photoperiod of 14:10 (L:D). The developmental time was found to significantly decrease with increasing temperature. The developmental time from egg hatching to adult emergence was respectively 47.6, 35.0, 24.1, 20.0, and 17.1 days at the temperatures of 19, 22, 26, 30, and 33° C. C. ciliata could not complete full development at 16° and 36° C. The developmental threshold temperature (C) estimated for egg-to-adult was 11.17° C, with a thermal constant of (K) 370.57 degree-days. Longevity of females was found to be the shortest, 17.7 days at 33° C and the longest, 58.9 days at 16° C, and that of males was the shortest, 19.7 days at 33° C and the longest, 59.7 days at 16° C. Fecundity was the highest at 30° C, being 286.8 eggs per female over an oviposition period of 8.9 days. Female lifetime fecundity was reduced at other temperatures, being the lowest (87.7 eggs per female) at 19° C. The population trend index (I) of C. ciliata was the highest (130.1) at 30° C and the lowest (24.9) at 19° C. Therefore, the optimal developmental temperature for C. ciliata was determined to be 30° C.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere