Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Wolbachia are intracellular bacteria that commonly infect many arthropods and some nematodes. In arthropods, these maternally transmitted bacteria often induce a variety of phenotypic effects to enhance their own spread within host populations. Wolbachia phenotypic effects generally either provide benefits to infected host females (cytoplasmic incompatibility, positive fitness effects) or bias host sex ratio in favor of females (male-killing, parthenogenesis, feminization), all of which increase the relative production of infected females in host populations. Wolbachia surveys have found infections to be exceedingly common in ants, but little is known at this juncture as to what phenotypic effects, if any, they induce in this group. Previous studies have demonstrated that individuals from native populations of the invasive fire ant Solenopsis invicta commonly harbor one or more of three Wolbachia variants. One of the variants, wSinvictaA, typically occurs at low prevalence in S. invicta populations, appears to have been transmitted horizontally into S. invicta three or more times, and has been lost repeatedly from host lineages over time. In order to determine the phenotypic effects and likely population dynamics of wSinvictaA infections in these ants, brood production patterns of newly mated fire ant queens were studied during simulated claustral founding and measured wSinvictaA transmission fidelity within mature single-queen families. No clear evidence was found for Wolbachia-mduced cytoplasmic incompatibility, significant fitness effects, or male-killing. Maternal transmission was perfect to both virgin queens and males. Possible mechanisms for how this variant could be maintained in host populations are discussed.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere