These studies compared three genetically distinct mosquito densoviruses Aedes aegypti (AeDNV), Hemagogus equinus (HeDNV), and Aedes Peruvian (APeDNV) densoviruses in a laboratory investigation to begin to evaluate their potential as mosquito control agents. A real-time polymerase chain reaction (PCR) assay for quantification of viral genomes and a standardized mosquito infection protocol were developed. Mortality associated with exposure to AeDNV increased in a dose-dependent manner, with the maximum mortality of 75.1% occurring in those organisms exposed to the highest dose of virus. The majority of death occurred as larvae. Similar results were observed with AeDNV produced from ground larvae and AeDNV produced from cell culture. Exposure of mosquitoes to HeDNV and APeDNV resulted in lower mortality, with values peaking at 33.5% for HeDNV and 27.8% for APeDNV. AeDNV-exposed larvae develop at a slower rate than nonexposed and HeDNV- and APeDNV-exposed larvae. Decreased virulence does not reflect a decrease in virus replication. PCR analysis of infectivity rates and titers in adults revealed reproduction of all three viruses, with an average viral titer of ≈10 logs/mosquito after exposure to the highest dose of each virus. Accumulation of virus in the larval-rearing water was also observed with values approaching 10–11 logs/ml for each virus. These data indicate that there are dramatic differences in the pathogenicity among mosquito densoviruses.