Plant and aphid biomass, photosynthetic pigment (chlorophylls a and b and carotenoids) concentrations, and chlorophyll a/b and chlorophyll/carotenoid ratios were quantified in aphid-infested ‘Tugela’ near-isogenic lines (Tugela, Tugela-Dn1, Tugela-Dn2, and Tugela-Dn5). The objectives were to quantify changes of photosynthetic pigments (chlorophylls a and b, and carotenoids) caused by aphid feeding and assess resistance of wheat isolines through aphid and plant biomass analysis. Biomass of bird cherry-oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae)-infested plants was lower than Russian wheat aphid, Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae),-infested plants. When infested by D. noxia, all lines showed increased biomass over time, except Tugela where biomass decreased on day 12. No difference in plant biomass was detected among R. padi-infested and uninfested wheat lines. Biomass of D. noxia from Tugela (D. noxia-susceptible) was significantly higher than from plants with Diuraphis noxia-resistant Dn genes. Diuraphis noxia biomass from Tugela-Dn1 and Dn2 lines was not different from each other, but they were lower than from Tugela-Dn5. In contrast, there was no difference in R. padi biomass among wheat lines. Concentrations of chlorophylls a and b and carotenoids were significantly lower in D. noxia-infested plants compared with R. padi-infested and uninfested plants. When infested by D. noxia, chlorophyll a and b concentrations were not different among wheat lines on day 3, but they were lower in Tugela and Tugela-Dn1 than in Tugela-Dn2 and -Dn5 plants on days 6 and 12. However, no difference was detected in chlorophyll a/b or chlorophyll/carotenoid ratio among Tugela lines. The study demonstrated that Dn genes in the Tugela isolines conferred resistance to D. noxia but not to R. padi. Tugela-Dn1 was antibiotic, Tugela-Dn2 was tolerant and antibiotic, and Tugela-Dn5 was moderately antibiotic.