The effects of irradiation doses increasing from 0 to 100 Gy (1 Gy is energy absorbed in J kg−1 of irradiated material) on fertility, flight ability, survival, and sterile male mating performance were evaluated for mass-reared Anastrepha obliqua (Macquart). High sterility values (>98.2%) for irradiated males were obtained for doses as low as 25 Gy. Egg hatch was inhibited for irradiated males crossed with irradiated females at a low dose of 20 Gy. However, we estimated that to achieve 99.9% sterility (standard goal of many sterile insect technique programs), irradiation doses had to be increased to a dose between 50 and 75 Gy. At doses of 25 Gy and greater, we observed a decreasing trend in adult flight ability and an increasing trend in adult mortality. Such differences were greater for pupae irradiated at a young age compared those irradiated 24 h before emergence. Our single most relevant finding was that sterility induction (i.e., oviposition of nonfertilized eggs) was two times greater for males irradiated at low doses (40 Gy) than for males irradiated at high doses (80 Gy) when used at a 3:1:1 sterilized male to fertile male to fertile female ratio. Males irradiated at high doses may have been outcompeted by unirradiated males when courting unirradiated females. Implications of our findings for sterile insect technique programs are discussed.