The relationship of size of test arena, number of holes in a grain probe trap body and capture of the sawtoothed grain beetle, Oryzaephilus surinamensis (L.), was determined in simulated field tests conducted in an outdoor screen enclosure exposed to natural temperature fluctuations. Polyvinylchloride (PVC) probe bodies were attached to electronic sensor heads, and insect captures were recorded electronically using an electronic grain probe insect counter (EGPIC) system. In comparisons among PVC probe trap bodies with 60, 132, 252, and 492 holes, tested at 18 insects per kilogram in 4.5, 17, and 40 kg of soft wheat in cylindrical arenas (10.2, 20.3, and 30.5 cm in diameter, respectively), number of holes in the probe trap body had no effect on insect capture, but percentage of insects recovered was indirectly related to size of the test arena. Periodicity of insect capture was determined using the time-stamp data that were recorded by the EGPIC system. Circadian rhythm was observed in the periodicity of the capture that corresponded to foraging activity peaks documented for sawtoothed grain beetles, with activity peaks occurring early in the scotophase. There were shifts in times of peak activity among the different test arena sizes that corresponded to differences in temperature in the grain mass. Increases in both temperature and contact between insects and grain probe in the smallest arenas resulted in higher capture of sawtoothed grain beetles. This research documents additional important factors when evaluating capture of sawtoothed grain beetles in grain probe traps.
How to translate text using browser tools
1 February 2004
Arena Size, Hole Density, and Capture of Oryzaephilus surinamensis (Coleoptera: Silvanidae) in Grain Probe Traps
Nancy D. Epsky,
Dennis Shuman
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
<
Previous Article
|
Journal of Economic Entomology
Vol. 97 • No. 1
February 2004
Vol. 97 • No. 1
February 2004
automated monitoring
bioassay conditions
diel rhythm
grain probe trap
Oryzaephilus surinamensis