Insect abundance is commonly recorded in the form of discrete counts taken from plants. Analyses of these counts provide information about spatial distributions and population structure. A study was conducted in the Lower Rio Grande Valley of Texas during April and May 2014 to determine how populations of potato psyllids [Bactericera cockerelli (Šulc)] within three potato fields change over time. It was found that potato psyllid populations in these potato fields frequently changed both spatially and temporally. Chi-square goodness of fit tests and Akaike's Information Criterion indicated that the frequency distributions of potato psyllid counts conformed to a negative binomial distribution, implying an aggregated spatial pattern. Variance–mean ratios were always much larger than one, also implying spatially clumped populations. However, with a few exceptions, a Spatial Analysis by Distance IndicEs analysis showed that potato psyllid counts were mostly random in space, the clumping generally occurring on individual potato plants and rarely involving groups of potato plants in close proximity.Trends in proportions of plants infested by at least one potato psyllid and the clumping parameter k were similar for all three potato fields. Potato psyllid spatial population structure is a dynamic process that involves continuous adult movements leading to substantial redistribution of potato psyllids over limited time spans of 2 to 3 d. By capturing elements of their spatial and temporal patterns of redistribution, the study reported here is a step towards a better understanding of the population dynamics and movement of potato psyllids.
How to translate text using browser tools
13 December 2019
Spatially Explicit Changes in Potato Psyllid (Hemiptera: Triozidae) Populations in Three South Texas Potato Fields
Don C. Henne,
Jenita Thinakaran
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Journal of Economic Entomology
Vol. 113 • No. 2
April 2020
Vol. 113 • No. 2
April 2020
Bactericera cockerelli
population dynamics
population redistribution
SADIE
zebra chip disease