Pest-induced changes in plant reflectance are crucial for the development of pest management programs using remote sensing. However, it is unknown if plant reflectance data is also affected by foliar insecticides applied for pest management. Our study assessed the effects of foliar insecticides on leaf reflectance of soybean. A 2-yr field trial and a greenhouse trial were conducted using randomized complete block and completely randomized designs, respectively. Treatments consisted of an untreated check, a new systemic insecticide (sulfoxaflor), and two representatives of the most common insecticide classes used for soybean pest management in the north-central United States (i.e., λ-cyhalothrin and chlorpyrifos). Insecticides were applied at labeled rates recommended for controlling soybean aphid; the primary insect pest in the north-central United States. Leaf-level reflectance was measured using ground-based spectroradiometers. Sulfoxaflor affected leaf reflectance at some red and blue wavelengths but had no effect at near-infrared or green wavelengths. Chlorpyrifos affected leaf reflectance at some green, red, and near-infrared wavelengths but had no effect at blue wavelengths. λ-cyhalothrin had the least effect on spectral reflectance among the insecticides, with changes to only a few near-infrared wavelengths. Our results showing immediate and delayed effects of foliar insecticides on soybean reflectance indicate that application of some insecticides may confound the use of remote sensing for detection of not only insects but also plant diseases, nutritional and water deficiencies, and other crop stressors.