Thermal death kinetics of Conogethes punctiferalis (Guenée) (Lepidoptera: Pyralidae) at different life stages, heating rate, and temperature is essential for developing postharvest treatments to control pests in chestnuts. Using a heating block system (HBS), the most heat-tolerant life stage of C. punctiferalis and the effects of heating rate (0.1, 0.5, 1, 5, and 10°C/min) on insect mortality were determined. The thermal death kinetic data of fifth-instar C. punctiferalis were obtained at temperatures between 44 and 50°C at a heating rate of 5°C/min. The results showed that the relative heat tolerance of C. punctiferalis was found to be fifth instars > pupae > third instars > eggs. To avoid the enhanced thermal tolerance of C. punctiferalis at low heating rates (0.1 or 0.5°C/min), a high heating rate of 5°C/min was selected to simulate the fast radio frequency heating in chestnuts and further determine the thermal death kinetic data. Thermal death curves of C. punctiferalis followed a 0th-order kinetic reaction model. The minimum exposure time to achieve 100% mortality was 55, 12, 6, and 3 min at 44, 46, 48, and 50°C, respectively. The activation energy for controlling C. punctiferalis was 482.15 kJ/mol with the z value of 4.09°C obtained from the thermal death—time curve. The information provided by thermal death kinetics for C. punctiferalis is useful in developing effective postharvest thermal treatment protocols for disinfesting chestnuts.
How to translate text using browser tools
1 October 2015
Thermal Death Kinetics of Conogethes punctiferalis (Lepidoptera: Pyralidae) as Influenced by Heating Rate and Life Stage
Lixia Hou,
Yanli Du,
Judy A. Johnson,
Shaojin Wang
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Journal of Economic Entomology
Vol. 108 • No. 5
October 2015
Vol. 108 • No. 5
October 2015
Conogethes punctiferalis
heating rate
life stage
thermal death Kinetics
thermal treatment