Temperature is known to play a crucial role in the population dynamics of insects. Insects have evolved different mechanisms to resist unfavorable extreme temperatures. In recent years, western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), and onion thrips, Thrips tabaci (Lindeman) (Thysanoptera: Thripidae), have caused significant damage to vegetable crops. Because of global warming and expanding areas of vegetable cultivation, a study of the effects of heat stress on these thrips species is warranted. We exposed the various developmental stages of western flower thrips and onion thrips to temperatures of 41, 43, or 45°C for 2, 6, 12, 24, or 36 h to determine the effects of heat stress on survival. Our results showed that the heat resistance of nonadult western flower thrips was greater than that of the nonadult onion thrips, and that the natural heat resistant ability was the primary factor in heat resistance in western flower thrips. In contrast, the heat resistance of adult onion thrips was greater than that of the adult western flower thrips, which was primarily the result of the ability of searching suitable microenvironment that enabled the onion thrips to mitigate the effects of high temperatures more efficiently than the western flower thrips. Our analysis of the differences in heat resistance between western flower thrips and onion thrips provides important information for the development of thermal treatments for controlling western flower thrips and onion thrips.