BioOne.org will be down briefly for maintenance on 17 December 2024 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
How to translate text using browser tools
20 October 2023 Bedforms and Sedimentary Features Related to Water-Depth Variations in a Sandy Tidal-Flat Environment
Yvonne Battiau-Queney, Sandra Ventalon, Romain Abraham, Vincent Sipka, Olivier Cohen, Denis Marin
Author Affiliations +
Abstract

Battiau-Queney, Y.; Ventalon, S.; Abraham, R.; Sipka, V.; Cohen, O., and Marin, D., 2024. Bedforms and sedimentary features related to water-depth variations in a sandy tidal-flat environment. Journal of Coastal Research, 40(1), 80–103. Charlotte (North Carolina), ISSN 0749-0208.

This study highlighted the variability of a wide sandy macrotidal coastal system on short timescales. Changes in water depth and exposure length were the main drivers of this variability. In the study area, the coastal system consists of three units: a lower ridge-and-runnel beach, a 1000-m-wide tidal flat, and a sandy backshore. This research is based on sedimentary features that can record physical forces, especially the bedforms at the beach surface, and their relationship with beach gradient, exposure length, and changing water depth, according to tidal, weather, and marine conditions. It also demonstrated the ability of scanning electron microscope analysis of quartz grain microtextures to indicate the level of marine and eolian energy in the coastal system. The widespread wave and current sand ripples on the tidal flat showed great variability in time and space. A minimum water depth of 0.30 to 0.50 m was required for their development. The role of wind-induced waves and the frequent interference of tidal, wave, and wind forcing mechanisms are emphasized. The development of some complex sand ripples extended over a complete lunar tidal cycle. Wind-generated sand ripples were observed only on the backshore. Their absence on the tidal flat, despite the high level of eolian energy attested by quartz microtextures, and the poor development of dunes on the backshore are explained by factors impeding eolian sand transport at the beach surface such as extreme fetch segmentation and possible shell armoring of the beach surface during dry periods. This study demonstrated the short-term variability of the beach morphology as opposed to the long-term stability of the coastal system as a whole, in which the ultradissipative tidal flat, characterized by limited sand supply, low wave energy, and high but inefficient wind energy, plays a key role.

Yvonne Battiau-Queney, Sandra Ventalon, Romain Abraham, Vincent Sipka, Olivier Cohen, and Denis Marin "Bedforms and Sedimentary Features Related to Water-Depth Variations in a Sandy Tidal-Flat Environment," Journal of Coastal Research 40(1), 80-103, (20 October 2023). https://doi.org/10.2112/JCOASTRES-D-23-00025.1
Received: 23 March 2023; Accepted: 17 July 2023; Published: 20 October 2023
KEYWORDS
French North Sea coast
marine energy
sand ripples
sediment supply
SEM quartz microtextures
Wind energy
wind waves
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top