The effects of light adaptation on flicker fusion frequency were examined in the photoreceptors of 13 species of deep-sea crustaceans. Light adaptation produced a significant increase in the maximum critical flicker fusion frequency (CFFmax) in 7 species—all 6 species of euphausiids in the study, and 1 species of oplophorid (Group 1). This is the first example of an increase in temporal resolution due to light adaptation in a deep-sea species. In the other six species—2 oplophorids, 1 pandalid, 1 pasiphaeid, 1 penaeid and 1 sergestid (Group 2)—light adaptation had no effect, or resulted in a decrease in the flicker fusion frequency. The mean dark-adapted CFFmax of the Group 1 species was significantly higher, and the mean response latency significantly lower, than those of the Group 2 species. Possible explanations for these differences include the activity and bioluminescence mode of preferred prey items, as well as the retention of larval/juvenile adaptations in adult eyes.
How to translate text using browser tools
1 August 2003
Effects of Light Adaptation on the Temporal Resolution of Deep-sea Crustaceans
Tamara M. Frank
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Integrative and Comparative Biology
Vol. 43 • No. 4
August 2003
Vol. 43 • No. 4
August 2003