Release of inorganic mercury pollutants into shallow aquatic environments has resulted in the bacterial production of a more toxic organic mercury species, methylmercury. The bacterial organomercurial lyase (MerB) catalyses the protonolysis of the carbon–mercury bond and releases Hg(II), a less toxic, non-biomagnified form of mercury. Our objective was to engineer eastern cottonwood (Populus deltoides), a fast-growing tree adapted to growth in riparian environments, with the merB gene to explore its potential for phytoremediation of mercury. We produced multiple eastern cottonwood clones expressing a modified bacterial merB gene, confirmed that the gene was expressed in the transclones and tested the regenerated plants for their ability to tolerate exposure to an organic mercury source, phenylmercuric acetate (PMA), in vitro and in hydroponic culture, compared to wild-type control trees. Transgenic merB plants expressed high levels of MerB protein and showed some evidence of higher resistance to the organic mercury than wild-type plants, producing longer roots under exposure to PMA in vitro, although hydroponic culture results were inconclusive. Our results indicate that in order for merB to be useful in eastern cottonwood trees designed to degrade methylmercury at mercury-contaminated aquatic sites, it will probably need to be combined with other genes such as merA.
How to translate text using browser tools
1 May 2006
EXPRESSION OF ORGANOMERCURIAL LYASE IN EASTERN COTTONWOOD ENHANCES ORGANOMERCURY RESISTANCE
DONGSHENG CHE,
RICHARD B. MEAGHER,
CLAYTON L. RUGH,
TEHRYUNG KIM,
ANDREW C.P. HEATON,
SCOTT A. MERKLE
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
In Vitro Cellular and Developmental Biology - Plant
Vol. 42 • No. 3
May 2006
Vol. 42 • No. 3
May 2006
adventitious shoots
methylmercury
phytoremediation
Populus deltoides
transgenic plants