Sperm morphology (size and shape) and sperm velocity are both positively associated with fertilization success, and are expected to be under strong selection. Until recently, evidence for a link between sperm morphology and velocity was lacking, but recent comparative studies have shown that species with high levels of sperm competition have evolved long and fast sperm. It is therefore surprising that evidence for a phenotypic or genetic relationship between length and velocity within species is equivocal, even though sperm competition is played out in the intraspecific arena. Here, we first show that sperm velocity is positively phenotypically correlated with measures of sperm length in the zebra finch Taeniopygia guttata. Second, by using the quantitative genetic “animal model” on a dataset from a multigenerational-pedigreed population, we show that sperm velocity is heritable, and positively genetically correlated to a number of heritable components of sperm length. Therefore, selection for faster sperm will simultaneously lead to the evolution of longer sperm (and vice versa). Our results provide, for the first time, a clear phenotypic and genetic link between sperm length and velocity, which has broad implications for understanding how recently described macroevolutionary patterns in sperm traits have evolved.
How to translate text using browser tools
1 October 2009
Sperm Morphology and Velocity are Genetically Codetermined in the Zebra Finch
Jim Mossman,
Jon Slate,
Stuart Humphries,
Tim Birkhead
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Evolution
Vol. 63 • No. 10
October 2009
Vol. 63 • No. 10
October 2009
sexual selection
sperm competition
sperm size
sperm swimming speed
sperm trait heritability