When social interactions occur, the phenotype of an individual is influenced directly by its own genes (direct genetic effects) but also indirectly by genes expressed in social partners (indirect genetic effects). Social insect colonies are characterized by extensive behavioral interactions among workers, brood, and queens so that indirect genetic effects are particularly relevant. I used a series of experimental manipulations to disentangle the contribution of direct effects, maternal (queen) effects, and sibsocial (worker) effects to variation for worker, gyne, and male mass; caste ratio; and sex ratio in the ant Temnothorax curvispinosus. The results indicate genetic variance for direct, maternal, and sibsocial effects for all traits, except for male mass there was no significant maternal variance, and for sex ratio the variance for direct effects was not separable from maternal variance for the primary sex ratio. Estimates of genetic correlations between direct, maternal, and sibsocial effects were generally negative, indicating that these effects may not evolve independently. These results have broad implications for social insect evolution. For example, the genetic architecture underlying social insect traits may constrain the realization of evolutionary conflicts between social partners.