BioOne.org will be down briefly for maintenance on 12 February 2025 between 18:00-21:00 Pacific Time US. We apologize for any inconvenience.
How to translate text using browser tools
1 August 2004 ADAPTATION TO TEMPERATE CLIMATES
William E. Bradshaw, Peter A. Zani, Christina M. Holzapfel
Author Affiliations +
Abstract

Only model organisms live in a world of endless summer. Fitness at temperate latitudes reflects the ability of organisms in nature to exploit the favorable season, to mitigate the effects of the unfavorable season, and to make the timely switch from one life style to the other. Herein, we define fitness as Ry, the year-long cohort replacement rate across all four seasons, of the mosquito, Wyeomyia smithii, reared in its natural microhabitat in processor-controlled environment rooms. First, we exposed cohorts of W. smithii, from southern, midlatitude, and northern populations (30–50°N) to southern and northern thermal years during which we factored out evolved differences in photoperiodic response. We found clear evidence of evolved differences in heat and cold tolerance among populations. Relative cold tolerance of northern populations became apparent when populations were stressed to the brink of extinction; relative heat tolerance of southern populations became apparent when the adverse effects of heat could accumulate over several generations. Second, we exposed southern, midlatitude, and northern populations to natural, midlatitude day lengths in a thermally benign midlatitude thermal year. We found that evolved differences in photoperiodic response (1) prevented the timely entry of southern populations into diapause resulting in a 74% decline in fitness, and (2) forced northern populations to endure a warm-season diapause resulting in an 88% decline in fitness. We argue that reciprocal transplants across latitudes in nature always confound the effects of the thermal and photic environment on fitness. Yet, to our knowledge, no one has previously held the thermal year constant while varying the photic year. This distinction is crucial in evaluating the potential impact of climate change. Because global warming in the Northern Hemisphere is proceeding faster at northern than at southern latitudes and because this change represents an amelioration of the thermal environment and a concomitant increase in the duration of the growing season, we conclude that there should be more rapid evolution of photoperiodic response than of thermal tolerance as a consequence of global warming among northern, temperate ectotherms.

William E. Bradshaw, Peter A. Zani, and Christina M. Holzapfel "ADAPTATION TO TEMPERATE CLIMATES," Evolution 58(8), 1748-1762, (1 August 2004). https://doi.org/10.1554/03-582
Received: 9 October 2003; Accepted: 27 April 2004; Published: 1 August 2004
JOURNAL ARTICLE
15 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

KEYWORDS
global climate change
life-history evolution
reciprocal transplants
seasonal selection
stress tolerance
thermal and photoperiodic adaptation
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top