Termites are major plant decomposers in tropical forest ecosystems, but their cryptic nature poses an obstacle for studying their ecological roles in depth. In the current study, we quantified climatic and geographic information of 137 termite collection sites in the Kenting National Park, Taiwan, and described the ecological niches and assemblage patterns of 13 termite species of three families. Three major assemblage patterns are reported. First, the three termite families were found in most landcovering types with similar number of species, which indicated that each family played a unique role in the ecosystem. Second, average numbers of termite species were not different among collection sites, but the total number of termite species found in each landcovering type was different, which indicated that termite niche capacity in each small area was the same but some landcovering types were composed of diverse microhabitats to host more termite species. Third, termite species of every family showed distinct moisture preferences in their habitat choices. In addition to the three assemblage patterns, we found that niche size of the advanced termite family, Termitidae, was larger than that of the primitive termite families, Rhinotermitidae or Kalotermitidae. The broader choices of cellulosic materials as food sources may allow Termitidae to adapt to more diverse environments than exclusive wood feeders. Termite niche quantification could further be used to study termite pest adaption in urban areas, interspecific competition between native and invasive species, and plant decomposition processes.
How to translate text using browser tools
1 June 2015
Termite Assemblage Pattern and Niche Partitioning in a Tropical Forest Ecosystem
Hou-Feng Li,
Yen-Chiu Lan,
Ikuko Fujisaki,
Natsumi Kanzaki,
How-Jing Lee,
Nan-Yao Su
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.

Environmental Entomology
Vol. 44 • No. 3
June 2015
Vol. 44 • No. 3
June 2015
congeneric competition
detritivore
Geographic Information System
niche segregation
niche size