BioOne.org will be down briefly for maintenance on 17 December 2024 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
How to translate text using browser tools
21 August 2018 Salinity improves growth, photosynthesis and bioenergy characteristics of Phragmites karka
Zainul Abideen, Muhammad Qasim, Tabassum Hussain, Aysha Rasheed, Bilquees Gul, Hans-Werner Koyro, Raziuddin Ansari, M. Ajmal Khan
Author Affiliations +
Abstract

Based on biomass composition of plants collected from saline habitats, Phragmites karka (Retz.) Trin. ex Steud. has emerged as a suitable feedstock for biofuel. In the present study, plant growth, eco-physiological responses and bioenergy characteristics of P. karka grown under conditions ranging from non-saline to ∼80% seawater salinity are reported. Moderate salinity (NaCl at 100 mol m–3) increased plant fresh weight (20%), number of leaves (25%) and specific plant length, which were directly linked with increased net photosynthetic rate (25%) and stomatal conductance (25%) compared with the non-saline control. Higher photosynthetic efficiency was achieved by increasing electron transport rate (ETR, 20%), effective quantum yield (YII, 21%) and maximum efficiency of photosystem II (Fv/Fm, 20%). Decreased non-photochemical quenching (Y(NPQ)) and malondialdehyde content (18%) indicated an oxidative balance, which was also reflected in total carotenoids and chlorophylls. These eco-physiological parameters worked together to increase cellulose (34%) and hemicellulose (70%) at NaCl concentrations up to 200 mol m–3. Decreased growth under higher salinity could be linked with photosynthesis inhibition, due to stomatal closure and co-occurring reduction in CO2 uptake. Lower stomatal conductance increased water-use efficiency but led to over-production of reactive oxygen species, which disturbed oxidative stability (increasing ETR/PN) and imposed membrane leakage. Consequently, plants accumulated more carotenoids and soluble carbohydrates to stabilise PSII machinery (Fv/Fm, YII and Y(NPQ)), and to survive under high salinity. Such adaptations, however, led to growth penalty and reduced quality of lignocellulosic biomass. The above findings suggest that P. karka qualifies as a suitable raw material for biofuel under moderate salinity.

© CSIRO 2018
Zainul Abideen, Muhammad Qasim, Tabassum Hussain, Aysha Rasheed, Bilquees Gul, Hans-Werner Koyro, Raziuddin Ansari, and M. Ajmal Khan "Salinity improves growth, photosynthesis and bioenergy characteristics of Phragmites karka," Crop and Pasture Science 69(9), 944-953, (21 August 2018). https://doi.org/10.1071/CP18154
Received: 19 April 2018; Accepted: 12 July 2018; Published: 21 August 2018
KEYWORDS
ecophysiology
energy feedstock
halophytes
lignocellulose
marginal lands
ROS
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top