Rhizomatous and perennial warm-season C4 grasses such as Miscanthus spp. and switchgrass (Panicum virgatum) are potential bioenergy crops for temperate regions. However, lignin in Miscanthus and switchgrass inhibits the cellulose digestion process during bioethanol production. One of the targets for improvement of forages from feedstocks to bioenergy crops is to develop a cost-efficient biorefinery process through lignin content manipulation. Numerous reports have shown that RNAi suppression of lignin-biosynthesis pathway genes can increase biomass fermentable sugar yields for biofuel production. These studies have also reported that RNAi suppression of cell-wall lignin biosynthesis can decrease biomass yield and resistance to biotic stress in the transgenic plants. Transcriptome and metabolome approaches can be used to clarify the networks and pathways of lignin biosynthesis to facilitate the identification of appropriate target genes for transformation. However, whole-genome sequencing of the forage species, which provides much-needed genomic information, is limited. Germplasm of natural, low-lignin mutants also plays a role in identification of genetic regulation of lignin content and this would be useful breeding material. Molecular markers have been developed and utilised to accelerate identification of quantitative trait loci/genes for traits relating to the biorefinery process. All of these studies will serve as basic information for supporting genetic improvement through classical breeding or genetic transformation, and offer the opportunity to develop cultivars which have enhanced biomass and are cost-efficient for biorefinery process.