Understanding the role of microhabitats in the ecology of plethodontid salamanders is of utmost importance in the light of recent climate change. Plethodontid species are inherently susceptible to rising temperatures and drier conditions as they utilize cutaneous respiration. Furthermore, many species of plethodontid salamanders have restricted ranges, including species limited to single mountain tops, increasing the consequences of environmental change as their ability to disperse is limited. In this study we compare microhabitat data for a broadly distributed salamander species, Plethodon cinereus, and two microendemic species P. sherando and P. hubrichti. Our analyses evaluate two hypotheses. First, each of these species occupies microhabitat that differs from the available habitat. Second, microhabitat selection of the two microendemic species diverges from the widespread P. cinereus. In addition to testing these hypotheses, we provide additional data to highlight the importance of quantifying thermal microhabitats at different scales. Both P. cinereus and P. sherando were found in microhabitats that differed from randomly selected microhabitats. Moreover, P. cinereus occurred in habitats with high relative humidity and cooler air temperatures, whereas P. sherando occurred in habitats with warmer air temperatures but cooler substrate temperatures. These results suggest that habitat selection may play a role in the persistence of the range of P. sherando in contact zones with P. cinereus. Our data suggest that there may be habitat use differences between P. cinereus and P. hubrichti, but a limited sample size prevents us from making any firm conclusions. We also demonstrated variation in temperatures available in different microhabitats, which highlights the need to better understand microhabitat use as well as how these microhabitats will be affected by climate change.