Denitrification losses from agricultural land have been identified as a significant nitrogen (N) loss pathway that contributes to poor utilization of applied N. Higher losses have been reported when inorganic fertilizer N is substituted with an organic N source such as livestock manure. This research examines the relationships between denitrification rates, land management practices and soil processes when using spring applied liquid dairy manure (LDM) as principal N source. Mean daily denitrification rates (DDRs) in a perennial hayfield (PH) rotation and a corn-soybean-wheat (CSW) rotation with or without tillage (T and NT respectively) ranged between 0.9 and 27.0 g N ha-1 day-1. Mean, seasonal DDRs in the PH rotation were significantly lower in three out of six seasons when compared with the CSW-T and (or) CSW-NT rotation. When averaged across the six season study period, the mean DDR in PH of 4.4 g N ha-1 day-1 was also significantly lower than CSW-T and NT (7.6 and 8.1 g N ha-1 day-1, respectively). There were no significant effects of tillage in the CSW rotations in any of the six growing seasons. When treatment and growing season data were combined, a positive relationship between water-filled pore space (WFPS) and DDR indicated a threshold of approximately 40% WFPS for onset of significant denitrification. Similarly, the relationship between soil nitrate levels and denitrification rates in the population data set demonstrated that NO3- began to limit DDR below 2-5 mg N kg-1. This 6-year study of denitrification losses suggests a primary effect of WFPS, a secondary effect of O2 consumption as reflected by soil respiration, and nitrate limiting only at relatively low concentrations. Environmental variables were more consistent drivers of denitrification in three manure-fed crop rotations typical of Atlantic Canada dairy operations than were land management decisions and practices.