Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the initial step of glycerolipids biosynthesis and contributes to oil production, membrane stabilization, and stress responses in plants. In major field crops, little information on the GPAT gene family and their potential stress-related functions were available. In this study, 15 GPAT gene family members were identified from the maize genome and designated as ZmGPAT1–ZmGPAT14 and ZMS1. The ZmGPAT proteins contained 371–557 amino acids and had a molecular weight between 42.7 and 61.2 kDa. Phylogenetic analysis revealed that ZmGPATs fell into four clusters. All 15 ZmGPAT proteins possessed conserved PlsC/LPLAT (phosphate acyltransferases/lysophospholipid acyltransferases) domains and featured multiple acyltransferase motifs. The expression profiles of ZmGPAT genes were different in various tissues of maize and the elevated expression of several ZmGPAT genes occurred at early seed developmental stages. In response to environmental stresses, differential expression of ZmGPATs had been observed, highlighted by the significant induction of transcripts accumulation of some ZmGPATs under cold treatment. This study will help to better understand the potential roles of GPAT in oil production and development and abiotic stress responses in field crops.