Appropriate growth, development, and function of the placenta is central to the success of nutrient partitioning between the mother, placenta, and fetus. Hormones such as placental lactogen (PL) and leptin are produced in the bovine placenta and play an important role in nutrient partitioning and regulation of placental and fetal growth. Nuclear transfer pregnancies are associated with a number of fetal and placental abnormalities, including increased placental growth and macrosomia, and hence represent a unique situation to gain insight into fetoplacental growth regulation. We have examined the expression of bovine PL (bPL) and leptin in placentomes of artificially inseminated (AI), in vitro produced (IVP), and nuclear transfer (NT) pregnancies at Days 50, 100, and 150 of gestation in the cow. Immunolocalization studies showed that spatial and temporal patterns of expression of bPL and leptin were markedly altered in the placentomes of NT pregnancies compared with AI or IVP controls. Concentrations of bPL in allantoic fluid, as determined by radioimmunoassay (RIA), were significantly higher (P ≤ 0.001) in NT pregnancies (17.9 ± 3.2 ng/ml; mean ± SD) compared with AI (2.03 ± 1.5 ng/ml), but not IVP (23.4 ± 12.8 ng/ ml) pregnancies on Day 150 of gestation. In contrast, amniotic fluid levels of bPL were significantly decreased in NT pregnancies at Day 150 gestation. Leptin mRNA expression, as determined by real-time reverse transcription-PCR, was increased 2.4- to 3.0-fold in NT placentomes compared with AI controls at all gestational ages examined. We speculate that the observed dysregulation of expression of bPL and leptin in NT placentomes could contribute to aberrations in cell migration and invasion and subsequently to alterations in placental metabolism and transfer of nutrients to the fetus, thus leading to increased placental and fetal macrosomia in NT pregnancies.