Salmonella living in biofilms are more resistant to chemical and physical stresses. However, information regarding the regulation of genes involved in biofilm formation for Salmonella enterica serovar Pullorum remains limited. In this study, eight mutants with knockout of genes ompR, rpoS, rfaG, rfbH, rhlE, metE, spiA, or steB from the Salmonella enterica serovar Pullorum strain S6702 were constructed. Phenotypic analysis revealed that all mutants were similar to the wild-type strain in growth rate. Only the ompR mutant showed a complete loss of production of curli and biofilm formation. The other mutants showed a modified production of curli and cellulose with less effect related to biofilm formation. The results of animal experiments indicated that the deletion of genes ompR, spiA, rfaG, or metE in wild-type strains contributed to attenuation of virulence in 1-day-old chickens. This study may bring new insights into novel vaccines or therapeutic interventions against Salmonella enterica serovar Pullorum infections.