Nitrogen oxides are released during atmospheric combustion of fossil fuels and biomass, and during the production of certain chemicals and products. They can react with natural or man-made volatile organic compounds to produce smog, or else can be further oxidized to produce particulate haze, or acid rain that can eutrophy land and water. The reactive nitrogen that begins in the energy sector thus cascades through the atmosphere, the hydrosphere and soils before being eventually partially denitrifed to the global warming and stratospheric ozone-depleting gas nitrous oxide or molecular nitrogen. This paper will suggest how an economic analysis of the nitrogen cycle can identify the most cost-effective places to intervene. Nitrogen oxides released during fossil-fuel combustion in vehicles, power plants and heating boilers can either be controlled by add-on emission control technology, or can be eliminated by many of the same technical options that lead to carbon dioxide reduction. These integrated strategies also address sustainability, economic development and national security issues. Similarly in industrial production, it is more effective to focus on redesigning industrial processes rather than on nitrogen oxide pollution elimination from the current system. This paper will suggest which strategies might be utilized to address multiple benefits rather than focusing on single pollutants.
How to translate text using browser tools
1 March 2002
Energy, Industry and Nitrogen: Strategies for Decreasing Reactive Nitrogen Emissions
William R. Moomaw
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
AMBIO: A Journal of the Human Environment
Vol. 31 • No. 2
March 2002
Vol. 31 • No. 2
March 2002