How to translate text using browser tools
18 August 2022 Foraging Time and Temperature Affected Birth Timing of Rhinolophus ferrumequinum and Predicted Year-To-Year Changes for 25 Years in a Population in West Wales, U.K.
Peter T. Andrews, Margaret M. Andrews, Thomas P. McOwat, Paul Culyer, Robert J. Haycock, Ann N. Haycock, David J. Harries, Neil P. Andrews, Robert E. Stebbings
Author Affiliations +
Abstract

Movements of Rhinolophus ferrumequinum in and out of the nursery roost at Stackpole (West Wales, U.K.) were monitored automatically from 1994 to 2018 with simultaneous measurements of roost and external air temperatures. Pups were counted manually in June–July and mean birth dates calculated. Maximal foraging times of the population between 16:00 h and 08:00 h and temperatures at midnight showed three types of activity. These types of activity explained why warmer springs were followed by earlier birth dates. When April was warmer the number of degree days, linked to the activity of night-flying insects, was higher so the maximal foraging times were longer. Hence, mean birth dates were earlier due to faster gestation. The indirect effect of degree days on the birth date, measured by the partial regression coefficient (ß = -0.321), was weaker than the direct effect (ß = -0.628) and the mediating effect of maximal foraging time was significant (P < 0.001). During May–June and June–July bats foraged mainly from dusk to dawn so there was little variation in the maximal foraging times of the population, and it did not significantly mediate the effect of temperature on birth date. Birth dates were later when the external temperatures in June–July were higher (ß = 0.309), but the effect was small (R2 = 9.5%). Path analysis further revealed that longer maximal foraging times of the population in April predicted the year-to-year changes in the number of births and subsequently the number of adult females. Maximal foraging times of the population in April were a major influence on birth timing and ultimately determined whether the population grew or declined.

© Museum and Institute of Zoology PAS
Peter T. Andrews, Margaret M. Andrews, Thomas P. McOwat, Paul Culyer, Robert J. Haycock, Ann N. Haycock, David J. Harries, Neil P. Andrews, and Robert E. Stebbings "Foraging Time and Temperature Affected Birth Timing of Rhinolophus ferrumequinum and Predicted Year-To-Year Changes for 25 Years in a Population in West Wales, U.K.," Acta Chiropterologica 24(1), 65-81, (18 August 2022). https://doi.org/10.3161/15081109ACC2022.24.1.005
Received: 5 February 2021; Accepted: 5 January 2022; Published: 18 August 2022
KEYWORDS
birth timing
foraging
greater horseshoe bat monitoring
mediation
multivariate path analysis
nursery roost
population
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top