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ABSTRACT Characterizing relative temporal and spatial variations in both the living and detrital components of bivalve food

is required to predict bivalve growth across environments with contrasting seston compositions. The present article describes how

remote sensing can be applied for such characterization, both over large spatial scales and fine spatial resolutions (i.e., farm scale;

10�s of meters), thereby providing key information for bivalve aquaculture operations and site selection, including the restoration

of native species. Using natural seawater samples collected from contrasting culture sites in North America and Europe, a simple

model was developed to predict the total particulate organic matter (POM) available as food to bivalves from high-resolution

remote-sensing images of coastal embayments which estimate chlorophyll (CHL) and turbidity, in which CHL acts as a proxy for

living organics and turbidity as a measure of total suspended particulate matter (SPM). The resulting POM derived from satellite

images, along with temperature and CHL, are then used as inputs to the bivalve bioenergetic model, ShellSIM, to predict the

growth ofMytilus edulis, Crassostrea virginica, and Ostrea edulis along the coast of Maine, one of the most convoluted coasts in

the United States, for aquaculture site selection.
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INTRODUCTION

Modeling bivalve filter feeder growth in response to envi-

ronmental variables in the coastal zone has applications to
coastal zone management, and may include determination of
estuary-wide carrying capacity, site selection, and production

capacity for aquaculture. The use of relatively new, high-
resolution, remote-sensing data as input to bivalve growth
models has been hampered by the lack of a method to estimate
nonliving organics within the detrital elements of suspended

matter, whichmay contribute substantially to growth (Hawkins
et al. 2013a, 2013b). Thomas et al. (2011) used estimates of
temperature and chlorophyll (CHL) from satellite data and a

dynamic energy budget model to model mussel growth in the
Mont Saint-Michel Bay, France, but the detrital components of
food were not estimated. Furthermore, Snyder et al. (2017)

used a growth index to map oyster growth based on tempera-
ture, CHL, and turbidity derived fromLandsat 8 measurements
along the Maine Coast, and Radiarta et al. (2008) applied a
multicriteria evaluation approach using remote-sensing data for

scallop aquaculture site selection in Japan; neither of these
studies modeled growth itself.

Satellite remote sensing can provide routine information on

temperature, CHL, turbidity, and colored dissolved organic
matter over large areas of coast (Franz et al. 2015), but it does
not estimate particulate organic matter (POM) directly. At the

very highest turbidities, dilution of nutritious particles with
inorganic sediments which are nondigestible may ultimately

limit bivalve growth. For example, Adams et al. (2019) found
that the American oyster growth rate was a positive function of
the CHL/turbidity ratio. Meanwhile, in less turbid estuaries,
turbidity can be a useful indication of primary production in-

volving phytoplankton and bioavailable phytodetritus, which
provides enzyme hydrolyzable amino acids for bivalve nutrition
during algal decay (Adams et al. 2019). Chlorophyll, an esti-

mate of living phytoplankton biomass, has been related to
particulate organic carbon, POC, in the euphotic zone
(Legendre &Michaud 1999). Using optical and filtered samples

following a diatom bloom in Japan, Wang et al. (2011) found
that POC was also correlated with both SPM and CHL.
Whereas CHL-a (CHL) is widely used as a proxy for the living

organics available as food to bivalve shellfish, and which can
work well in oligotrophic to hypereutrophic waters that are
dominated by phytoplankton, there is a need to characterize
nonliving detrital organics, which are also amain source of food

to bivalves, from remote-sensing data. Wozniak et al. (2016)
found a strong correlation among water surface reflectance or
reflectance ratios and concentrations of SPM and POM in the

Baltic Sea during four cruises in the spring and fall. However,
no previous studies have related POM, which is used in bivalve
growth models to include the detrital components of food, both

to field CHL and turbidity (which is measured optically as a
proxy for total suspended matter), which can be estimated from
remote-sensing images in the coastal zone. The purpose of this

article is to present an equation which can be used to predict
POM, which in combination with CHL can then be used to
estimate the living and nonliving food for bivalves from satellite
images. Together with temperature, this allows the prediction of

shellfish growth across contrasting environments as described
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for ShellSIM (Hawkins et al. 2013a). Results are presented
within the ShellGIS platform (Newell et al. 2013), as a tool

toward optimizing aquaculture and restoration.

MATERIALS AND METHODS

Satellite Data

Conversion of the Landsat 8 IR channel data to sea surface

temperature (SST) values followed the procedure presented by
Thomas et al. (2002). In brief, each Landsat 8 daily IR data field
is regressed against fully calibrated and atmospherically cor-

rected NOAA Advanced Very High Resolution Radiometer
SST data from the same day and location offshore. The Landsat
8 data are downscaled to the spatial resolution of Advanced
Very High Resolution Radiometer data over their coincident

coastal regions. An iterative regression approach that elimi-
nates the most obvious atmospherically contaminated pixels
converges on regression coefficients that relate the Landsat 8

channel values to SST. These values are then applied to the
entire, full spatial resolution, Landsat 8 IR field, assuming a
locally homogenous atmosphere.

Processing of Landsat 8 color channels followed the proce-
dure outlined in Snyder et al. (2017). In brief, for mostly cloud-
free days, top-of-the-atmosphere radiance was corrected for
atmospheric inputs by finding a strongly absorbing, and thus

very dark, humic lake within the scene and assuming all the blue
signal emanating from it is due to the atmosphere. The appro-
priate atmospheric model was then removed from the full scene,

and the reflectance at non-cloudy pixels was computed using
NASA�s SeaDAS environment. SPM and CHL were inverted
from reflectance based on the reflectance at 665 nm and a re-

flectance ratio algorithm, respectively (Snyder et al. 2017).

Prediction of Particulate Organic Matter from Landsat 8–Derived SPM

and CHL

To assess whether POM might be predicted from SPM and/

or CHL, measures from natural seawater samples collected in
shellfish-growing areas in Maine and Connecticut (the Dam-
ariscotta River, ME and Branford, Long Island Sound) in 2010,
2011, and 2016 were collated together with similar measures

from 12 other locations in Europe (Hawkins et al. 2013a), fil-
tered on GFF filters and analyzed for SPM, POM, and CHL as
described by Hawkins et al. (2013b). In total, these included 290

coincident samples for each variable, measured across wide
ranges of CHL and SPM of up to 28 mg L–1 and 210 mg L–1,
respectively. Stepwise linear regression was then used to analyze

the dependencies of POM on both CHL and SPM within all
data combined.

ShellGIS

The relative growth of individuals in three species, that is,
Crassostrea virginica, Mytilus edulis, and Ostrea edulis, were
presented in the desktop application ShellGIS (Newell et al.

2013) (https://www.shellgis.com), using satellite data from one
date with the assumption that conditions were constant over a
30-day period.

Satellite products derived from Landsat 8 data for SST,
CHL, and turbidity (SPM) as described earlier were provided in
GeoTIFF format at 30, 60, and 60 m resolution, respectively.

Cloud-free satellite scenes obtained for Midcoast Maine for
July 14, 2013, and for the Penobscot River area using data from

August 23, 2016 were used to generate ShellGIS outputs.
Sea surface temperature and CHL were used as direct inputs

into the ShellSIM model. Particulate organic matter was de-
rived from the satellite data using the formula: POM¼ (0.1533
CHL) + (0.194 3 SPM) as described in Eq. 1 in the following
text. Particulate organic matter images were calculated using
raster tools in QGIS (Development Team Q G.I.S. 2012).

To run ShellGIS, QGIS was used to clip the study area to
Midcoast Maine and create a series of 256 3 256 tiles covering
the entire area. This required 84 tiles in the coastal zone,

arranged 12 3 7 zonally by meridian. Images were converted
into ESRI float format images for import into ShellGIS, and
then, .csv files were created for the loading of these data.

A number of coding modifications were made to ShellGIS to

enable the import of the satellite data and to facilitate the use of
constant values for the remaining model input data. The default
values used for the other parameters were as follows: salinity:

30, aerial exposure: 0, current speed: 25 cm s–1, and dissolved
oxygen: 8 mg L–1. Additional code was written to process each
tile at a time, providing constant values for CHL and turbidity,

and then used to predict drivers describing food availability as
required by ShellSIM.

RESULTS

Prediction of Particulate Organic Matter from Landsat 8–Derived SPM

and CHL

Analyzing the combined data from samples of natural sea-

water collected at 14 locations in both the United States and
Europe, stepwise linear regression established highly significant
separate dependencies of POM (mg/L) on both CHL (mg/L) and
SPM (mg/L) as follows:

POM ¼ ½0:153ð ±0:030Þ3CHL�+ ½0:194ð ±0:008Þ3 SPM�;
(1)

where ±2 SE are bracketed for each parameter, r2 ¼ 0.94, re-

sidual df ¼ 288, and P < 0.0001. To check whether Eq. 1 might
be used to predict POM from Landsat 8–derived CHL and
SPM, POMwas predicted from all CHL and SPM illustrated in
Figure 1 as POMPRED (mg/L) ¼ (0.153 3 CHL) + (0.194 3
SPM). The linear regression where POMPRED ¼ 0.939
(±0.028) 3 POM), r2 ¼ 0.94, residual df ¼ 289, and P < 0.0001
established that 94% of the variance in POMPRED was pre-

dicted on the basis of CHL and SPM.
To check whether ShellSIM might use POMPRED derived

as described earlier, and thus by inference Landsat 8–derived

CHL and SPM, the aforementioned approach was applied us-
ing coincident measures of environmental drivers and oyster
growth collected independently in both Maine and Connecticut

during 2011. ShellSIM was calibrated for Crassostrea virginica
from explicit measures of feeding behavior, together with lit-
erature values for responses to temperature, salinity, and other
variables. Applying the single resulting set of parameters for

this species within ShellSIM�s standard set of functional inter-
relations, growthmeasured independently of water samples was
simulated to less than 5% error across full ranges of environ-

ment variability and throughout normal culture practice in both
the Damariscotta River and Long Island Sound (Fig. 2). In the
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present study, POMPRED has been derived from the same
measures of CHL and SPM as were used to drive those growth

simulations, which have been rerun using POMPRED in place
of actual measures of POM, maintaining all other drivers un-
changed. Resulting growth simulations are also illustrated in

Figure 2, showing how, for exactly the same ShellSIM param-
eter set, growth predicted on the basis of POMPRED was
within 5% of that predicted using POM.

ShellGIS

For the Midcoast Maine area, ShellGIS was run using five
input dates from July to October to estimate bivalve growth.

However, in many areas, cloud cover made it difficult to get a
complete time series for each pixel over the whole region, so just

one cloud-free date (July 14, 2013) was chosen. Consequently,
the ShellGIS code was modified to allow the raster data to stay
constant for the length of a shellfish growth model run for
30 days, allowing shellfish to grow measurably during that

period. ShellSIM was run using data from the first date, July
14, 2013, for 30 days. The model takes approximately 30 h to
run for the full Midcoast Maine area for 30 days at a 10-day

interval. Output grids include shell length, total fresh weight
(TFW), dry soft tissue weight, dry condition index, wet con-
dition index, cumulative clearance volume, cumulative nitro-

gen excretion, cumulative oxygen volume uptake, cumulative
total mass deposited as pseudofeces, cumulative total mass
deposited as true feces, cumulative total mass deposited as
both pseudofeces and true feces, number of animals harvested,

and total biomass harvested. Here, only growth predicted as
TFW of oysters and mussels over the entire coast of Maine was
presented.

The satellite image for July 14, 2013 covers the coastal area
from Portland to Thomaston. Unfortunately, there were no
coincident data for the eastern coastal area. Although it was

3 y later, the best quality satellite data for the eastern area at a
similar time of year were August 23, 2016. The model was also
run for this date for the eastern Maine region. Because the

Midcoast Maine region has warmer water and is better hab-
itat for Crassostrea virginica, here, the results for this species
in the July 14 image were presented. The results for the colder,
eastern area of Maine for the two species which also grow

better in colder waters (Mytilus edulis and Ostrea edulis) were
presented.

ShellGIS produces results that can be visualized and queried

with a ‘‘point and click’’ method. The images show areas of red
and yellow where TFW has increased from an initial size of 5.2
g, green where there is a slight increase in TFW, and blue where

there is a decrease in TFW over the 30-day period. There are
artifacts in the images right next to the shoreline and from some
clouds. Future workmay help to remove these types of artifacts.
Clear differences between the eastern and western images are to

be expected, given their different dates.
Results are shown for three shellfish species: the blue mussel

Mytilus edulis, the eastern oyster Crassostrea virginica, and the

European flat oysterOstrea edulis. Users can click on individual
parts of the images to reveal the TFW value for that location.
Predicted growth is presented for all three species in Figure 3

(blue mussels, 3A; eastern oysters, 3B; and European float
oysters, 3C). Predictions within these images are consistent with
the results of Snyder et al. (2017), including the locations of

current commercial shellfish farms in Maine, while also high-
lighting some promising areas that are not currently under
cultivation.

DISCUSSION

It is generally acknowledged that turbidity and associated

inorganic matter may limit oyster growth through the dilu-
tion of organic dietary constituents (e.g., Thomas et al. 2011,
Snyder et al. 2017, Adams et al. 2019, Palmer et al. 2020).

Furthermore, models of bivalve growth that do not explic-
itly address responsive adjustments in the filtration and ab-
sorption of POM may have limited application between

Figure 2. Comparisons of Crassostrea virginica growth simulated by

ShellSIM with growth observed (mean % 2 SE) throughout normal

culture practiced in both the Damariscotta River, ME, and Long Island

Sound, CT, and growth predicted using particulate organic matter derived

by Eq. 1.

Figure 1. Relationship between the particulate organic matter (POM)

predicted from measures of chlorophyll and SPM (POMPRED, mg L–1)

and actual POM (POM, mg L–1) measured in the same seawater samples

from Damariscotta, ME, and Branford, CT, plus 12 other locations in

Europe as described by Hawkins et al. (2013a). The dashed line is 1:1, and

the black line is the regression (Eq. 1).
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Figure 3. (A) Blue mussel predicted growth in July in easternMaine in ShellGIS using constant drivers based on satellite images. The images show areas

of red and yellow where total fresh weight (TFW) has increased, green where there is a slight increase in TFW, and blue where there is a decrease in TFW

over the 30-day period. (B) Eastern oyster predicted growth in July in Midcoast and eastern Maine in ShellGIS using constant drivers based on satellite

images. The images show areas of red and yellow where TFW has increased, green where there is a slight increase in TFW, and blue where there is a

decrease in TFW over the 30-day period. A different color scheme was used in this image to highlight differences in predicted growth. (C) European flat

oyster predicted growth in eastern Maine in ShellGIS using constant drivers based on satellite images. The images show areas of red and yellow where

TFW has increased, green where there is a slight increase in TFW, and blue where there is a decrease in TFW over the 30-day period.
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contrasting geographical areas across which both the com-
position and bioavailability of that POMmay vary (Pusceddu

et al. 1996, Dauwe et al. 1999, Monaco et al. 2019). Instead,
simulation of bivalve growth across different habitats has
been improved in the ShellSIM growth model by including
relations which define dynamic adjustments between the rel-

ative ingestion and absorption of both CHL-rich and all
remaining organics such as bacteria, protozoans, colloids,
and/or detritus, thereby helping to account for changes in

seston composition that may vary greatly both in time and
space (Hawkins et al. 2013b). Such resolution is likely to be
important when using remote sensing to source model drivers

over large areas. Described here is a means to predict POM
using CHL and turbidity derived from satellite images, over
ranges of CHL (<28 mg L–1) and SPM (<200 mg L–1) that span
most natural environments (Hinga et al. 1995, Gernez et al.

2014, 2017), and throughout which ranges bivalve growth is
maintained through interrelated adjustments in feeding and
digestion (Hawkins et al. 2013a, 2013b). Such predictions are

able to predict oyster growth adequately in Maine and Con-
necticut (Fig. 1).

Prediction of SPM from optical measurements followed the

method of Snyder et al. (2017), where there was a 1/1 rela-
tionship between satellite turbidity and turbidity measured in
situ using a Sea-BirdWater QualityMonitor Backscatter sensor

calibrated with a Hach turbidity meter. A relationship of 1/1
from SPM (mg L–1) to sensor-calibrated turbidity (NTU) was

used, but this relationship can depend on particle size and has
has been shown to vary from 1/1 in the winter to 2/1 in the
summer (Jafar-Sidik et al. 2017).

There may be certain environments where the relationship

among POM, CHL, and SPM reported in Eq. 1 earlier will
not apply, such as in riverine systems where PIM dominates
the suspended fraction and POC is as low as 1% of the total

suspended matter (Etcheber et al. 2007). In addition, water
salinity is not currently measured with remote sensing, but
which may be proven correlated with colored dissolved or-

ganic matter, thus with potential to further enhance associated
predictions of bivalve growth. Regardless, given that detritus
often contributes to suspended particulates, the simple pre-
dictive equation for POM as presented here represents a

convenient means whereby high-resolution satellite images
may be used to compare the relative growth of bivalves over
large and contrasting regions of the coastal zone. Whereas

obtaining time series data from cloud-free satellite images may
be challenging, the GIS presentation of the relative growth
of multiple bivalve species using a growth model driven by

both CHL and POM from a single image provides a useful tool
for aquaculture site selection and the restoration of native
species.
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Gernez, P., L. Barillé, A. Lerouxel, C. Mazeran, A. Lucas & D.

Doxaran. 2014. Remote sensing of suspended particulate matter in

turbid oyster-farming ecosystems. J. Geophys. Res. Oceans 119:

7277–7294.

Gernez, P., D. Doxaran & L. Barillé. 2017. Shellfish aquaculture from
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