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INTRODUCTION

Entoprocta is a phylum of small-sized, sessile or slow-
moving invertebrates. About 200 species have been reported 
worldwide, 150 of which are solitary and the rest colonial 
(Borisanova and Schepetov, 2023). Although most ento-
procts are marine, a few species inhabit fresh or brackish 
water. The majority of solitary entoprocts are commensals on 
other invertebrates. They can depart from the substratum, 
and a few may also be able to swim (Wasson, 2002). Colonial 
species are sessile, attaching to various abiotic or biotic sub-
strata (e.g., stones, algae, mollusk shells, arthropods), and 
are generally believed not to show selectivity in their substra-
tum preference (Borisanova, 2018).

Pycnogonids, or sea spiders, are almost exclusively 
marine invertebrates (cf. Kakui and Fujita, 2023). Except for 
some commensal or parasitic species, most of ca. 1400 spe-
cies are free living (Arnaud and Bamber, 1987; Bamber et al., 
2024). As they are slow-moving epibenthic animals with a 
hard exoskeleton, they provide attachment or egg-laying 
sites for many other organisms, including algae, diatoms, 
foraminiferans, ciliophorans, sponges, hydrozoans, bryozo-
ans, brachiopods, polychaetes, leeches, gastropods, barna-
cles, and tunicates (Khan and Paul, 1995; Wambreuse et al., 
2021). Some mobile epibionts (nemerteans, nematodes, 
mites, and isopods) have also been reported associated with 
them (Wambreuse et al., 2021).

In 2024, we found an entoproct colony on the surface of 
a sea spider in Japan. To our knowledge, there are only a few 
reports of entoprocts epibiotic on sea spiders (e.g., Marfenin 
and Belorustseva, 2006: p. 240). Here we describe the gross 
morphology of the entoproct, present partial nucleotide 
sequences for its nuclear 18S ribosomal RNA (18S) and 28S 
ribosomal RNA (28S) genes, and infer the species’ phyloge-
netic position in Entoprocta based on 18S data.
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MATERIALS AND METHODS

The sea spider with the attached entoproct was collected from 
a brackish estuary, Akkeshi-ko (43.047654° 144.857062°), at a 
depth of about 8 m on 23 June 2024, by means of a scallop dredge 
launched from the R/V Misago-maru (Hokkaido University, Japan). 
The sea spider was photographed alive on 25 June and fixed in 
80% ethanol on 28 June. The entoproct colony comprising three 
zooids was detached from the fixed sea spider. One zooid was pre-
served in 99% ethanol; the others were observed with an Olympus 
BX53 light microscope and then preserved in 99% ethanol.

DNA was extracted from the three zooids by using a NucleoSpin 
Tissue XS Kit (Macherey–Nagel, Germany). For the 18S gene, 
primers SR1 and SR12 (Nakayama et al., 1996) were used for 
amplification, and primers 18S-b3F, 18S-a4R, 18S-b5F, 18S-a6R, 
and 18S-b8F (Kakui et al., 2011, 2021; Kakui and Shimada, 2017; 
Kakui and Hiruta, 2022) for cycle sequencing. For the 28S gene, 
primers U178 and L1642 (Lockyer et al., 2003) were used for ampli-
fication, and primers U178, 300F, 300R, 900F, U1148 (Lockyer et 
al., 2003) for cycle sequencing. PCR amplification conditions for 
18S and 28S with KOD ONE PCR Master Mix (Toyobo, Japan) were 
45 cycles of 98°C for 10 s, 60°C for 5 s, and 68°C for 10 s. All 
nucleotide sequences were determined with a BigDye Terminator 
Kit ver. 3.1 and a 3730 DNA Analyzer (Life Technologies, USA). 
Fragments were concatenated by using MEGA7 (Kumar et al., 
2016). The sequences we determined were deposited in the 
International Nucleotide Sequence Database (INSD) through the 
DNA Data Bank of Japan under accession numbers LC830819 
(18S) and LC830820 (28S).

The 18S dataset for phylogenetic analysis included the one 
sequence we determined, and 20 entoproct sequences and an out-
group sequence from the INSD (Mackey et al., 1996; Littlewood et 
al., 1998; Fuchs et al., 2009, 2010; Rundell and Leander, 2012; 
Hartikainen et al., 2013; Kajihara et al., 2015; Borisanova et al., 
2015, 2018; Borisanova and Schepetov, 2023). The sequences 
were aligned by using the online version of MAFFT ver. 7 (Katoh 
and Standley, 2013; Katoh et al., 2019) with the “Auto” strategy 
(“L-INS-i” selected; Katoh et al., 2005) and then trimmed with 
MEGA7 to match the shortest length among them. Alignment-
ambiguous sites were removed with Gblocks ver. 0.91b (Castresana, 
2000) in NGPhylogeny.fr (Lemoine et al., 2019) and the “relaxed” 
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parameters described in Talavera and 
Castresana (2007). The aligned dataset 
contained 1507 characters. Methods for 
selecting the optimal substitution model 
(GTR+F+ I+G4), the maximum likelihood 
(ML) analysis, estimation of clade support 
(analyses of 1000 pseudoreplicates for both 
Shimodaira–Hasegawa-like approximate 
likelihood ratio tests [SH-aLRT] and ultrafast 
bootstraps [UFBoot]), and drawing the tree 
were as described by Shimada et al. (2023).

RESULTS AND DISCUSSION

The sea spider bearing the ento-
proct (Fig. 1A) had an ocular tubercle 
posterior to the neck, uniarticulate cheli-
fores, denticulate chelae, 5-articulate 
palps, and ovigers with a terminal claw, 
and four paired legs, and lacked cement 
gland pores. We thus identified it as a 
female of Nymphon sp. (Nymphonidae). 
Its trunk length (from the base of the 
chelifore to the posterior end of the 
fourth lateral process) was 3.62 mm. 
Along with the entoproct, several tuni-
cates, hydroids, and ciliophorans were 
attached to the sea spider.

One entoproct colony with three 
zooids was found on the dorsal surface 
of trunk segment 3 of the sea spider 
(Fig. 1). As each zooid sprouted from a 
creeping stolon and had a stalk with a 
thick muscular node and a thin, stiff 
peduncle (Barentsia-type zooid), and 
the colony lacked Pedicellina-type 
zooids, we identified the entoproct as 
Barentsia sp. (Barentsiidae) (Borisanova 
and Potanina, 2016). We could not rule 
out that larger colonies might also con-
tain Pedicellina-type zooids, i.e., that 
the ectoproct was a species of 
Pseudopedicellina. The largest zooid in 
the colony had eight tentacles and was 
about 0.7 mm long (Fig. 2), smaller than 
for the majority of colonial entoproct 
species (average lengths around several millimeters; 
Borisanova, 2018). In an 18S tree (Fig. 3), Barentsia sp. was 
the sister taxon to B. gracilis, with high nodal support (SH-
aLRT/UFBoot, 97.5%/96%). The p-distance in the aligned 
region between Barentsia sp. and B. gracilis was 0.2%.

Colonial entoprocts are generally thought to lack sub-
strate preference (Borisanova, 2018). Loxokalypus socialis, 
however, is epibiotic on a certain polychaetous annelid spe-
cies, and some other species are found more frequently on 
certain substrata (e.g., “B. [Barentsia] conferta is found on 
algae more often than other barentsiids are.”; Wasson, 
1997: p. 30). Because colonial entoprocts are sessile, the 
type of substratum and site of attachment can potentially 
affect their survival rate. This raises the question whether 
single entoproct species reported from various substrata 
might represent several substrate-specific cryptic species. 
It is unclear whether the sea spider is the sole substrate 

Fig. 1. Female Nymphon sp. with the entoproct Barentsia sp. attached; living animals 
photographed on 25 June 2024. (A) Habitus of Nymphon sp., dorsal view. (B) Posterior 
portion of Nymphon sp., dorsal view. Abbreviations: abd, abdomen; llp3, 4, left lateral 
processes 3, 4; rlp3, 4, right lateral processes 3, 4; st, sterile segment; ts3, 4, trunk seg-
ments 3, 4; zo, zooid.

Fig. 2. Two zooids of Barentsia sp. arising from a stolon (one 
zooid lacking its calyx; the loss occurred sometime between 25 
June and 28 June); ethanol fixed specimen (fixed on 28 June 2024).

utilized by our entoproct species. If it is restricted to one 
species of sea spider, or sea spiders in general, our ento-
proct is likely undescribed. Among about 50 colonial spe-
cies, 18S sequences are currently publicly available for only 
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six. Additional molecular data from colonial entoprocts on 
various substrate types may reveal higher species diversity 
and unexpected relationships between entoprocts and their 
substrata.
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