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Abstract

The number of introductions of alien insect has been increasing in the last decades, primarily transported 
in shipping containers. The attraction of light of different wavelengths (white, infrared, ultraviolet, and red) 
applied on sticky traps was tested for the development of new traps for hitchhiker insects. The addition of en-
tomological glue and insecticide on the trap was also tested. Tests were conducted on Cadra cautella Walker 
(Lepidoptera: Pyralidae), Drosophila melanogaster Meigen (Diptera: Drosophilidae), Sitophilus zeamais 
Motschulsky (Coleoptera: Curculionidae), and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) and 
released inside a shipping container. In the first test, one light color at a time was tested setting eight traps in 
the container, one for each possible combination of the variables: light on or off, glue added or not, and insecti-
cide sprayed or not. In the second, five traps were used, all of them coated with the entomological glue: one 
for each light color and one with light off as control. In all the single color tests (except for infrared), light-on 
traps captured more, except for T. castaneum that was not attracted to white. In the multi-color test, C. cautella 
showed no preference among white, ultraviolet, or red; Drosophila melanogaster preferred ultraviolet and 
white over red; and beetles had a much greater attraction to red. Lastly, the stronger entomological glue im-
proved catches of beetles, whereas insecticides did not. In conclusion, results suggest a possible application of 
sticky light traps against hitchhiker insects and further studies should verify if the simultaneous use of different 
light colors can improve the trap performance and does not act as a repellent.

Key words:  alien species, interception, Coleoptera, Lepidoptera, Diptera

Introduction of non-native pests into new territories is a problem 
that has become of primary importance: driven by trade global-
ization, the rate of new introductions is increasing year by year 
(Bertelsmeier et al. 2017, Seebens et al. 2017). In the last centuries, 
human action has decisively facilitated and increased the processes 
of settlement of alien species outside their natural range (Hulme 
et al. 2008, Liebhold and Tobin 2008), with arthropods, and espe-
cially insects, considered as the most common and damaging group 
of invaders (Bradshaw et al. 2016). Invasion science is increasingly 
recognizing human-mediated dispersal as a pivotal node (Ricciardi 
et al. 2017, Bullock et al. 2018), demonstrating that the number of 
new biological invasions is closely related to the increase in inter-
national trade (Levine and D’Antonio 2003, Westphal et al. 2008). 
The most widely used means in international trade are shipping con-
tainers, which account for about 90% of global trade (IMO 2012, 
Bernhofen et al. 2016).

To try preventing and reducing new introductions, several 
international agreements have been signed such as the World 
Trade Organization Agreement on the Application of Sanitary and 
Phytosanitary Measures (SPS), the International Plant Protection 
Convention (IPPC) of the Food and Agricultural Organization of the 
United Nations, and the Convention for Biological Diversity (CBD). 
All these agreements are based on the assumption that prevention 
is the most economically sound way to manage biological inva-
sions (Puth and Post 2005, Bogich et al. 2008, Hulme et al. 2009). 
Nevertheless, there are many major gaps in the regulatory frame-
work for the management of invasive insects, mainly dealing with 
the difficulty in assessing the effect of potential preventive measures 
implemented to reduce the risk of new introductions (Hulme et al. 
2008, Hulme 2009). In addition, due to the huge volumes of goods 
passing through points-of-entry every day, phytosanitary inspectors 
can only check a small part of the commodities, with increasing 
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difficulties in selecting the loads to be sampled (Everett 2000, NRC 
2002, Surkov et al. 2008).

The work of phytosanitary inspectors is a part of the border 
surveillance, applied at the point-of-entry, in order to prevent the 
settlement of alien species at the initial stage of their possible inva-
sion process (Hulme 2014). In recent years, many tools and tech-
niques have been tested to increase the effectiveness and efficiency of 
visual inspections (Augustin et al. 2012, Poland and Rassati 2019). 
Traps activated with pheromones, or volatiles, or other lures (e.g., 
light and colors) are the most common tools used in bio-surveillance 
programs, besides sniffer dogs, electronic noses, genetic tools for 
barcoding, acoustic detection, and laser vibrometry (Augustin et al. 
2012, Poland and Rassati 2019). However, baited traps have a limit 
linked to the specificity of the pheromones used, which are often ac-
tive only against one or a few species (Augustin et al. 2012, Rassati 
et al. 2015, 2019). Moreover, pheromone traps are active only during 
the flight dispersal of the insects in the new area, when adults have 
already left infested goods and containers. Therefore, traps baited 
using generic visual (Olenici et al. 2001, Sakalian and Mario 2004) 
or luminous stimuli (Ndengué et  al. 2019, Silva et  al. 2019) may 
have very high potentials in the early detection of unknown alien in-
sect species arriving in international points-of-entry, especially when 
used inside the containers, i.e., before insect dispersal (Marchioro 
et al. 2020).

In the field of luminous stimuli, insects can be attracted (posi-
tive phototaxis) or repelled (negative phototaxis) to special light 
sources (Park and Lee 2017). Although the use of light is already 
widespread in integrated pest management (Garstang 2004), there 
is still no large scale application of light traps for the interception 
of alien species. In general, the vision of insect pests ranges from a 
wavelength of 350 nm (ultraviolet) to 700 nm (red; Land 1997). In 
light traps, incandescent or mercury vapor light bulbs are widely 
used, but LEDs (light emitting diodes) have been used increasingly 
in recent times (Oh 2011, Mangan and Chapa 2013, Park and Lee 
2016). The advantages of LEDs are numerous and include small 
size, low weight, low electricity consumption, long lifetime, low 
temperature, high luminous efficiency, selectivity of specific wave-
length, and light intensity (Cohnstaedt et al. 2008, Yeh and Chung 
2009).

Widely used in agricultural systems (Oh 2011, Park and Lee 
2016), light traps were also tested in border surveillance for the 
interception of pests transported with goods inside containers 
(Mangan and Chapa 2013, Marchioro et al. 2020). A research con-
ducted by Marchioro et al. (2020) tested a light trap model inside 
a container, under different loading conditions, on four model spe-
cies: Cadra cautella Walker (Lepidoptera: Pyralidae), Drosophila 
melanogaster Meigen (Diptera: Drosophilidae), Sitophilus zeamais 
Motschulsky, and Ips typographus L.  (Coleoptera: Curculionidae). 
Results showed that trap performance is not affected by the con-
tainer load and a high number of catches were recorded for Diptera 
and Lepidoptera. Instead, the trap was scarcely effective against bee-
tles as the glue of the sticky cards of the trap was not strong enough 
to catch these insects, but a low attractiveness of the light installed 
in the trap also cannot be excluded. Results of this research have 
been encouraging and positive, but have also highlighted some gaps 
to be filled and improvements to be made on traps to improve their 
performance and effectiveness against more species. In view of these 
first results, the aim of this study was to investigate 1) how model 
species belonging to different insect orders respond to different light 
colors (i.e., wavelength), and 2) whether the synergistic use of more 
powerful glue and contact insecticides would improve capture per-
formance of traps compared to the use of sticky cards only. This aims 

to develop a generic light trap efficient in early detection of alien 
insects belonging to different orders and families.

Materials and Methods

Tested Traps
Light-sticky traps (TransTrap, Alpha Scents Inc., West Linn, OR) de-
veloped for use inside containers during shipment were modified as 
shown by Marchioro et al. (2020). The original device consists of a 
small carton box (15 × 23 × 4 cm) containing a LED to attract in-
sects and a yellow sticky card to catch them. The LED is powered 
by two AA batteries that can keep the light on for at least two con-
secutive weeks. The sticky card is attached to the bottom of the box 
and the light is positioned in the center. To increase the sticky sur-
face and, consequently, the catching performance of the trap, we at-
tached a second sticky card inside the box lid (Fig. 1). Sticky cards 
are produced by Alpha Scents Inc. too, and they are a standard 
model mainly indicated against flies, aphids, hoppers, psyllids, and 
yellow jackets (Alpha Scents Inc. 2013) and, also considering results 
obtained by Marchioro et al. (2020), they probably are not stronger 
enough in order to capture beetles.

A standard LED emits light that has two peaks, one at 465 nm 
(indigo) and the second between 525 and 600 nm (between green 
and yellow) and the result is white light. Beside the original trap 
model, in this study, we also replaced the manufacturer’s LED with 
LEDs of other three wavelengths: ultraviolet (wavelength 410 nm), 
red (wavelength 625  nm), and infrared (wavelength 940  nm). In 
order to prevent beetles from escaping, the inside surfaces of traps 
were also sprinkled with a strong entomological glue (Temo-O-
Cid, Adama Italia s.r.l., Bergamo, Italy) and a solution composed 
by 1 ml of deltamethrin-based insecticide (Decis 15 EW, Bayer AG, 
Leverkusen, Germany) per 1 liter of water. Temo-O-Cid is a specific 
glue for the capture of flies and insects that can be spread with a 
brush. Once applied, the evaporation of the solvent contained makes 
the product absolutely nontoxic. It does not dry and retains its char-
acteristics even when exposed to atmospheric agents. Temo-O-Cid is 
used to prepare chromotropic and all kinds of traps, to catch insects 
in orchards, vineyards, and flower crops. The greater strength of this 
glue, combined with a greater thickness of glue on the sticky card 
after its addition, should make it easier to catch larger insects.

Fig. 1. TransTrap, the trap used for the research.
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Model Species
The different trap models were tested against four model species be-
longing to Coleoptera, Lepidoptera, and Diptera orders, the three 
most common orders found inside shipping containers (Meurisse 
et al. 2019). Sitophilus zeamais, the maize weevil, is one of the major 
pests of stored maize in tropical and temperate regions of the world, 
but it also infests other cereals as alternative hosts (Erenso and Berhe 
2016, Nwosu 2018). Tribolium castaneum (Herbst) (Coleoptera: 
Tenebrionidae), the red flour beetle, is a stored grain, flour, and 
other cereal product pest (Brown et al. 2009). Cadra cautella, the 
almond moth, is a pest of cereal grains, beans, and other dried seeds 
(Aldawood et al. 2013, Husain et al. 2017). Drosophila melanogaster 
is a fruit and vegetable pest (Mallis 1954, Birmingham et al. 2011).

All insects were provided by a laboratory (Entostudio s.r.l., 
Padua, Italy) specialized in the breeding of arthropod species for sci-
entific purposes. The colony of S. zeamais was established in 2014 
with insects collected in the field. Adults were bred in plastic cups 
enclosed by a net and fed with grain. The photoperiod lasted 12 h at 
a solar spectrum artificial light of 6,000 K and 300 lux intensity and 
they were bred at 25 ± 1°C and 50 ± 5% RH. Similarly, adults of 
T. castaneum were bred in plastic cups enclosed by a fine net, at 25 ± 
1°C and 50 ± 5% RH. The photoperiod, at a solar spectrum artificial 
light of 6000 K and 300 lux intensity, lasted 14 h. Insects were fed 
with 95% of flour and 5% of beer yeast and a vial filled with water 
was present in the plastic cup to provide water and humidity to the 
colony. Adults of C. cautella were bred in glass jars positioned up-
side down with the opening closed by a 2-mm mesh net. The jar was 
placed above a plastic container to collect the eggs, which were then 
moved daily into plastic cups containing a mixture of wheat and 
corn flour, oat, bran, dry fruit, glycerol, honey, and yeast. The insects 
were reared at 25 ± 1°C and 50 ± 5% RH. The photoperiod, at a 
solar spectrum artificial light of 6,000 and 300 lux intensity, lasted 
12  h. Adults of D.  melanogaster were bred in BugDorme cages. 
A mixture of water, pieces of potato and fruit, powdered milk, and 
sugar was used as food and as an oviposition substrate. Insects were 
reared at 25 ± 1°C and 50 ± 5% of RH with a photoperiod of 12 h 
at a solar spectrum artificial light of 6,000 K and 300 lux intensity.

All insects were tested only once and within 2 d after their emer-
gence (for C.  cautella and D.  melanogaster) to guarantee highest 
vitality. We assumed a sex-ratio 1:1 as these four species reproduce 
sexually and produce a sex-balanced offspring (Englert and Bell 
1962, Santos et al. 1994, Danho et al. 2002, Soffan et al. 2012). The 
insects used in each trial were chosen randomly.

Trials in Container
Trials were conducted in an ISO standard shipping container 
1CC (interior size: 5.8 m length, 2.3 m width, and 2.3 m height; 
ISO 2013). The container was placed in the Agripolis Campus, 
University of Padua (Legnaro, Italy), without any shelter from 
sun and rain. The container was empty of goods and only the 
traps and insect-releasing device were placed inside. In contrast 
to the tests conducted the year before (Marchioro et al. 2020), in 
this case, no container load tests were carried out, as the aim of 
the study was to test the attractiveness of different wavelengths. 
Traps were positioned inside the container open, with lid and box 
forming a 90° angle. The lid was resting on the ground while the 
box was in a vertical position, as can be seen in Fig. 1. In trials 
in which some traps had to be placed on the top of the container, 
the use of metal hooks made it possible to maintain the same con-
formation as traps placed on the ground. Tests were conducted 
between May and July 2020.

Single Color Tests
The first group of tests was conducted using only one light color at 
a time. We used eight different traps at the same time, one for each 
of the eight possible combinations of the three considered variables: 
light (turned on or off), additional glue (added or not), and insecti-
cide (sprayed or not). A  trap with a turned off light and without 
additional glue or insecticide was used as control (trap ‘C’). Each dif-
ferent combination of variables corresponds to a different code: ‘L’ if 
the trap light was on, ‘G’ if glue was added, and ‘I’ if insecticide was 
added. The eight traps were randomly set in the eight corners of the 
container (changing the traps arrangement at each trial; Fig. 2): four 
traps were laid on the ground while four were hung by hooks from 
the ceiling. During each trial, we used 50 individuals for each model 
species released at the same time, for a total of 200 insects. With a 
device consisting of a cup containing the insects and a rope tied to 
the lid to free them, it was possible to release the insects just before 
the doors of the container were closed to prevent their escape. For 
each LED color (white, infrared, ultraviolet, and red), we conducted 
seven repetitions, on seven consecutive nights with similar weather 
conditions; each repetition lasted 18 h (from 05:00 p.m. to 11:00 
a.m. the following day). At the end of each trial, before starting a 
new one, we ventilated the container, swept the floor, and removed 
all insects from the walls to make sure there were none left inside.

Multicolor Tests
Other tests were conducted using, at the same time in the container, 
all traps with the four different light colors. One trap per light color 
(white, red, ultraviolet, and infrared) and coated with entomological 
glue was tested, whereas a trap with a turned off light and without 
additional glue was used as control (trap ‘C’). Again, each different 
light color corresponds to a different code: ‘W’ for white light, ‘IR’ 
for infrared light, ‘UV’ for ultraviolet light, and ‘R’ for red light. The 
five traps were randomly set inside a container, on the floor (chan-
ging the traps arrangement at each trial; Fig. 2). Seven repetitions 
were conducted on seven consecutive nights, with duration of 18 h 
(from 05:00 p.m. to 11:00 a.m. the following day). Fifty individuals 
per model species were used in each repetition, for a total of 200 
insects per day.

Statistical Analysis
In the ‘single color tests’, mean catches per trap of the model spe-
cies were compared using a mixed-effect model, with trap type (the 
eight possible combinations of the three tested variables) as a fixed 

Fig. 2. Disposition of the traps inside the container (doors were on the left 
side). Single color test: 1–8. Multicolor test: 5–9.
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variable and repetitions as a random variable. The model was fitted 
using the ‘lmer’ or ‘glmer’ functions in the lme4 package (Bates et al. 
2015) and using Poisson distribution or logarithmic transformation 
as appropriate (Table 1). Multiple comparisons between fixed vari-
ables were obtained using Tukey’s test (‘emmeans’ function in the 
emmeans package) with ‘Bonferroni correction’ (Russell 2019). 
When the use of this statistical test was inapplicable because of few 
captures, the Kruskal–Wallis test was applied using the ‘kruskal.test’ 
function in the stat package (R Core Team 2019).

In the ‘Multi color tests’, mean catches per trap of the model 
species were compared using a mixed-effect model, with trap type 
(the five light colors, including control) as a fixed variable and re-
petitions as a random variable; Tukey’s test with ‘Bonferroni cor-
rection’ was used for multiple comparisons between fixed variables. 
Statistical analysis was performed using R software, version 3.6.1 (R 
Core Team, 2019).

Results

The main obtained results are presented here briefly according to the 
tested light color. The number of captures for each model species in 
each test is reported in Supp Table S1 (online only).
Single Color Test—White Light
The four trap combinations with light turned on (trap L, L + G, L 
+ I, and L + G + I) caught similar numbers of C. cautella and sig-
nificantly higher than the light-off traps (C, G, I, and G + I; Table 1; 
Supp Table S2 [online only]; Fig. 3a). The same result was observed 
for D. melanogaster, although in this species trap L captured signifi-
cantly more individuals than L + G (Table 1; Supp Table S2 [online 
only]; Fig. 3b). Sitophilus zeamais was captured significantly more in 
traps L + G and L + G + I than all the others. Moreover, in S. zeamais 
the other two light-on traps (L and L + I) caught significantly more 
than light-off traps (Supp Table S3 [online only]; Fig. 3c). Only one 

Table 1. Results of the statistical models (P-value) used to test the effect of trap type for the four model species in all the tests conducted

Model species Trap type P-value t/z-value df Model Distribution

Single color test—White light
Cadra cautella L <0.001 9.303 48 LMM Normal

L + G <0.001 7.048
L + I <0.001 7.330
L + G + I <0.001 7.893

Drosophila melanogaster L <0.001 4.878 47 GLMM Poisson
L + G <0.001 3.826
L + I <0.001 4.334
L + G + I <0.001 4.366

Single color test—Infrared light
Cadra cautella – – – 47 GLMM Poisson
Drosophila melanogaster – – – 47 GLMM Poisson
Single color test—Ultraviolet light
Cadra cautella L <0.001 3.660 48 LMM Normal

L + G <0.01 3.253
L + I <0.01 3.186
L + G + I <0.01 3.253

Drosophila melanogaster L <0.001 4.369 47 GLMM Poisson
L + G <0.001 4.872
L + I <0.001 5.546
L + G + I <0.001 6.097

Single color test—Red light
Cadra cautella L <0.01 3.254 47 GLMM Poisson

L + G <0.01 3.254
L + I <0.001 3.531
L + G + I <0.001 4.542

Drosophila melanogaster L <0.001 4.777 48 LMM Log-transf.
L + G <0.001 4.245
L + I <0.001 5.552
L + G + I <0.001 5.098

Multi-color test
Cadra cautella UV <0.001 3.791 24 LMM Normal
Drosophila melanogaster W <0.001 6.732 29 GLMM Poisson

UV <0.001 5.988
R <0.001 4.159

Sitophilus zeamais W <0.001 5.727 24 LMM Log-transf.
UV <0.01 3.279
R <0.001 10.370

Tribolium castaneum W <0.05 2.621 24 LMM Log-transf.
UV <0.001 7.474
R <0.001 13.131

L = light on; G = glue added; I = insecticide sprayed.
Models = LMM: linear mixed-effects model; GLMM: generalized linear mixed-effects model; Distribution = Normal: normal distribution; Log-transf.: normal 

on log-transformed data; Poisson: Poisson distribution. t-value is referred to LMM models; z-value is referred to GLMM models.

Downloaded From: https://staging.bioone.org/journals/Journal-of-Economic-Entomology on 11 Jan 2025
Terms of Use: https://staging.bioone.org/terms-of-use

http://academic.oup.com/jee/article-lookup/doi/10.1093/jee/toab150#supplementary-data
http://academic.oup.com/jee/article-lookup/doi/10.1093/jee/toab150#supplementary-data
http://academic.oup.com/jee/article-lookup/doi/10.1093/jee/toab150#supplementary-data
http://academic.oup.com/jee/article-lookup/doi/10.1093/jee/toab150#supplementary-data
http://academic.oup.com/jee/article-lookup/doi/10.1093/jee/toab150#supplementary-data


2064 Journal of Economic Entomology, 2021, Vol. 114, No. 5

individual of T. castaneum was captured in traps L and L + G + I, 
and numbers too low to allow statistical analysis.

Single Color Test—Infrared Light
The four model species were captured only in very low numbers in 
traps activated with infrared light. Although for beetles (S. zeamais 
and T. castaneum) there were a few captures in traps treated with 
additional glue or insecticide (G, G + I, L + G, L + I, and L + G + I), 
there were no significant differences between the eight tested trap 
models (Supp Tables S2 and S3 [online only]).

Single Color Test—Ultraviolet Light
Similar to the white light test, C. cautella and D. melanogaster were 
caught significantly more by light-on traps (L, L + G, L + I, and L 
+ G + I) than light-off traps (Table 1; Supp Table S2 [online only]; 
Fig. 3d). In addition, for D. melanogaster, L + G + I captured signifi-
cantly more individuals than L traps (Table 1; Supp Table S2 [online 
only]; Fig. 3e). With beetles (S. zeamais and T. castaneum), L + G 
and L + G + I  captured significantly more insects than the other 
trap models (Table 1). Although for S.  zeamais the other six trap 
models showed no significant differences (with C and I trapping no 

individuals [Supp Table S3 [online only]; Fig. 3f]), for T. castaneum 
L + G + I was the trap type that captured the largest number of in-
sects, whereas L + G captured significantly more than C, G, I, and G 
+ I traps (Supp Table S3 [online only]; Fig. 3g).

Single Color Test—Red Light
Again, C. cautella and D. melanogaster were captured significantly 
more by light-on (L, L + G, L + I, and L + G + I) than light-off traps 
(Table 1; Supp Table S2 [online only]; Fig. 3h–i). Similarly, light-on 
traps coated with additional glue (L + G and L + G + I) caught sig-
nificantly more individuals of S. zeamais (P < 0.001, K = 46.290) 
and T. castaneum (P < 0.001, K = 45.231); in both beetle species, 
C, G, and I traps captured no insects (Supp Table S3 [online only]; 
Fig. 3j–k).

Multicolor Tests
Captures of C.  cautella in ultraviolet light trap were significantly 
higher than in control (light-off trap) and infrared light traps, but 
without differences from white and red light traps (Table 1; Supp 
Table S2 [online only]; Fig. 4a). For D. melanogaster white, ultra-
violet and red light traps caught a significantly higher number of 

Fig. 3. Mean (± SE) number of insects captured by each trap combination during the ‘Single color tests’ and divided for each model species (rows) and light color 
(columns). Means with different letters on the same graph were significantly different.
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individuals than control and infrared light traps. Moreover, white 
and ultraviolet light traps captured more than the red one (Table 
1; Supp Table S2 [online only]; Fig. 4b). Lastly, for S. zeamais and 
T. castaneum, red light trap outperformed the others. Ultraviolet and 
white light traps caught significantly more individuals of S. zeamais 
than control and infrared light traps (Table 1; Supp Table S2 [online 
only]; Fig. 4c), whereas for T. castaneum, ultraviolet light trap out-
performed control, infrared, and white traps (Table 1; Supp Table S2 
[online only]; Fig. 4d).

Discussion

Results show different phototactic responses for the various tested 
species. All model species showed a general attraction to light: in 
fact, in all the single color tests (except for infrared light) light-on 
traps captured more specimens. Only T. castaneum did not present 
an attraction for white light. In particular, in the multi-color test, 
we found that C. cautella has no preference between white, ultra-
violet, and red lights; Drosophila melanogaster prefers ultraviolet 
and white over red light; Sitophilus zeamais and T. castaneum have 
a much greater attraction to red light.

Land (1997) observed that, in general, insects can perceive light 
ranging in wavelength from 350 (ultraviolet) to 700 nm (red) and 

results of the ‘single-color tests’ agree with him. In fact, for all four 
model species, we obtained a significant effect of light with ultra-
violet, white, and red wavelengths, but not with infrared (940 nm). 
Moreover, light-on traps (with white, ultraviolet, and red LED) with 
the addition of entomological glue captured significantly more bee-
tles (both S. zeamais and T. castaneum) than normal traps or traps 
with insecticide only. This result confirms the hypothesis formu-
lated by Marchioro et al. (2020) according to which the standard 
glue of sticky cards, alone, was unsuitable to retain trapped beetles. 
Adding insecticide does not improve trap performance, probably be-
cause beetles are able to escape before dying. This is also true for 
Lepidoptera and Diptera: in fact, captures of light-on traps with in-
secticide are similar to other light-on traps. However, avoiding the 
use of insecticides may also allow trap use in containers transporting 
food, without risk of goods contamination.

White light shows among the best results for catching 
Lepidoptera and Diptera (although with no significant differences 
from ultraviolet and red light), probably due to its composition 
of two peaks at indigo and green-yellow wavelength. Measures of 
spectral efficiency of C.  cautella, in fact, highlight two regions of 
high efficiency at 546 nm (yellow-green) and 350 nm (ultraviolet) 
(Gilburt and Anderson 1996). Moreover, it has been observed by 
numerous studies that green and blue lights are very effective in 

Fig. 4. Mean (± SE) number of insects, divided for each model species, captured by each light color during the ‘Multi-color test’. Means with different letters on 
the same graph were significantly different.
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catching many Lepidoptera, like for instance Ephestia kuehniella 
(Soderstrom 1970), Plodia interpunctella (Soderstrom 1970, Park 
and Lee 2016), Sitotroga cerearella (Soderstrom 1970), Spodoptera 
exigua (Oh 2011), Spodoptera litura (Yang et al. 2012), and Plutella 
xylostella (Cho and Lee 2012). Also D. melanogaster is most sensi-
tive to short wavelength lights (ultraviolet, blue, and green) with two 
peaks at 420 nm and 495 nm (de Salomon and Spatz 1983, Kelber 
and Henze 2013). Light traps with similar wavelengths are largely 
used for moth monitoring, but they may also intercept Diptera (Kim 
and Lee 2014a, da Silva et al. 2019, Ndengué et al. 2019, Silva et al. 
2019).

Ultraviolet was one of the best wavelengths for Lepidoptera and 
Diptera (although catches did not differ from those obtained with 
white and red light), while it provided scarce results for Coleoptera. 
The general effectiveness of UV as an attraction for several insects 
is well-known (Hollingsworth et al. 1968, Kirkpatrick et al. 1970, 
van Grunsven et al. 2014, Thein and Choi 2016), in particular, for 
moths (Cho and Lee 2012, Infusino et al. 2017) and flies (Gaglio 
et al. 2018, Hogsette 2019). Regarding S. zeamais and T. castaneum, 
the literature instead provides conflicting results about the at-
tractiveness of UV. On one hand, Duehl et  al. (2011) found that 
T. castaneum was most attracted by UV wavelength and Kirkpatrick 
et al. (1970) found that some species of stored-products beetles pre-
ferred UV over green light. On the other hand, Park et al. (2015) and 
Song et al. (2016a) found that UV light was the less attractive for 
S. zeamais and T. castaneum.

Red wavelength also showed high attractiveness for our model 
species. For C. cautella, the number of trapped insects was similar 
to white and ultraviolet lights, as found for the similar species 
P. interpunctella (Park and Lee 2016). However, for other moth spe-
cies belonging to different orders, results are different: red light is less 
attractive than other light colors in S. litura (trapped with blue and 
green [Yang et al. 2012]), S. exigua (trapped with white light [Oh 
2011]), and S. cerearella (trapped with ultraviolet light [Kim and Lee 
2014b]). For D. melanogaster captures obtained with red light were 
lower than white and ultraviolet lights. Also for another Dipteran, 
Liriomyza trifolii, red light was less attractive than green and yellow 
lights, but more attractive than ultraviolet (Kim and Lee 2014a). 
Finally, for both beetle species, red light was the most attractive one, 
with more than twice the catches than those of white and ultraviolet. 
These results agree with other researches conducted on the photo-
tactic behaviour of S. zeamais (Park et al. 2015) and T. castaneum 
(Song et al. 2016a, 2016b), where red light was the best wavelength 
for both species. However, different results were obtained for other 
beetles: S. oryzae, congeneric of S. zeamais, preferred blue and green 
lights, whereas red and ultraviolet lights showed similarly lower cap-
ture performance (Jeon et al. 2012).

Finally, in our trials, infrared light was not attractive to any of the 
tested species. This result is not surprising as insect vision is gener-
ally shifted towards ultraviolet and they seem unable to see infrared 
radiation (Land, 1997). Other studies dealing with the phototactic 
behaviour of fly and moth species confirm this observation (Cho and 
Lee 2012, Kim and Lee 2014a, 2014b, Park and Lee 2016). However, 
certain studies have shown a similar attraction of S. zeamais to red, 
yellow, and infrared light (Park et al. 2015), and of T.  castaneum 
similar to infrared, white, yellow, green, and blue lights, and higher 
than ultraviolet (Song et al. 2016a).

In conclusion, we found that light is an effective ‘broad-spectrum’ 
attractant for several insect species belonging to different orders. 
Moreover, the use of a stronger glue on the sticky cards improves 
captures of beetles (although it does not improve moth and fly 
catches), solving the problem highlighted by Marchioro et al. (2020). 

Instead, the insecticide, in the formulations and doses tested, does 
not give any improvement in terms of catches. However, we also 
found that there is a clear response of the different species to the 
different lights tested: white and ultraviolet lights are the most at-
tractive for C. cautella and D. melanogaster, while red is the most ef-
fective in catching beetles. Moreover, we can hypothesize that using 
at the same time different traps with different light colors, there must 
have been some interference in the case of two colors both attractive 
to one species. Probably, using only one trap, the trap performance 
will increase. A possible solution could consist in the use of different 
lights at the same time in the same trap, but further studies should 
verify that this combination can improve the trap performance and 
is not a repellent. The aim of this study is to find a trap that can be 
used in a wide range of shipments, with a wide variety of commod-
ities. The tested glue (Temo-O-Cid) is non-toxic and this allows the 
trap to be used in conjunction with any type of food product (grains, 
flours, fruits, and vegetables). However, it can be used with any kind 
of cargo that can carry hitchhikers’ insects. This is only a pilot study 
that used few model species. In order to obtain more comprehensive 
and reliable results, other tests must be conducted, possibly during 
real shipments.
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Supplementary data are available at Journal of Economic 
Entomology online.
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